STATUSERHEBUNG BETREFFEND PM10 GRENZWERTÜBERSCHREITUNGEN IN WOLFSBERG IM JAHR 2003

Im Auftrag der Kärntner Landesregierung

Wien, Juli 2005
INHALT

1 ZUSAMMENFASSUNG ... 7
1.1 Grenzwertüberschreitungen ... 7
1.2 Immissionen und Ausbreitungsbedingungen .. 8
1.3 Emissionen von PM10 im Bezirk und der Gemeinde Wolfsberg .. 9
1.4 Herkunft der PM10-Belastung in Wolfsberg ... 10
1.5 Voraussichtliches Sanierungsgebiet .. 11
1.6 Mögliche Maßnahmen ... 12

2 EINLEITUNG .. 17

3 EINFÜHRUNG ZUM UMWELTPROBLEM SCHWEBESTAUB ... 19
3.1 Gesundheitliche Auswirkungen von Partikeln .. 20
3.1.1 Methoden zur Untersuchung der Gesundheitsauswirkung von Luftschadstoffen 20
3.1.2 Ergebnisse des aktuellen WHO Reviews .. 21
3.2 Größenverteilung der Partikel ... 23
3.3 Quellen .. 25
3.4 Chemische Zusammensetzung von Partikeln .. 27
3.5 Chemische Zusammensetzung der Emissionen wichtiger Quellen 30
3.6 Senken von Partikeln ... 30
3.7 Messmethoden .. 31
3.8 Rechtliche Regelungen ... 33

4 DATENGRUNDLAGE .. 35
4.1 Verwendete Messstellen, Zeitraum der Messungen .. 35
4.2 Untersuchungsgebiet .. 35
4.3 Verwendete Messdaten ... 35
4.3.1 Luftgütemessstelle Wolfsberg Hauptschule .. 38
4.3.2 Messstelle St. Andrä ... 39
4.3.3 Messstelle St. Georgen ... 39
4.3.4 Temporäre Messstellen Magersdorf, Gurtschitschach und Lavamünd 40
4.4 Bewertung der Datenlage .. 40
4.4.1 Immissionsdaten .. 40
4.4.2 Meteorologiedaten ... 40
4.4.3 Emissionsdaten .. 40
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>BESCHREIBUNG DER EMISSIONSQUELLEN ...</td>
</tr>
<tr>
<td>5.1</td>
<td>Emissionen im Bezirk Wolfsberg ...</td>
</tr>
<tr>
<td>5.1.1</td>
<td>PM10-Emissionen ...</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Abschätzung der PM10-Emissionen an einem Wintertag</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Emissionen von PM-Vorläufersubstanzen ...</td>
</tr>
<tr>
<td>5.2</td>
<td>Staubemissionsinventur Österreich ..</td>
</tr>
<tr>
<td>6</td>
<td>DIE METEOROLOGISCHE SITUATION ...</td>
</tr>
<tr>
<td>6.1</td>
<td>Übersicht über die Witterung, Dez. 2002 bis Dez. 2003</td>
</tr>
<tr>
<td>6.2</td>
<td>Windverhältnisse ..</td>
</tr>
<tr>
<td>6.3</td>
<td>Ausbreitungsbedingungen ..</td>
</tr>
<tr>
<td>6.4</td>
<td>Luftmassen und Fronten ..</td>
</tr>
<tr>
<td>7</td>
<td>DIE IMMISSIONSSITUATION IN ÖSTERREICH ..</td>
</tr>
<tr>
<td>7.1</td>
<td>Die PM10-Belastung im Jahr 2002 im österreichweiten Vergleich</td>
</tr>
<tr>
<td>7.2</td>
<td>Die PM10-Belastung im Jahr 2003 im österreichweiten Vergleich</td>
</tr>
<tr>
<td>7.3</td>
<td>Die PM10-Belastung im Jahr 2004 ...</td>
</tr>
<tr>
<td>7.4</td>
<td>Entwicklung der PM10-Belastung in Österreich 2000 bis 2004</td>
</tr>
<tr>
<td>8</td>
<td>DIE PM10-BELASTUNG IM LAVANTTAL ...</td>
</tr>
<tr>
<td>8.1</td>
<td>Die Immissionssituation in Wolfsberg im Vergleich zu Klagenfurt und Villach</td>
</tr>
<tr>
<td>8.2</td>
<td>Die Immissionssituation in Wolfsberg im Vergleich zu St. Andrä und Magersdorf</td>
</tr>
<tr>
<td>8.3</td>
<td>Die Immissionssituation in Wolfsberg im Vergleich zu Gurtchitschach und Lavamünd</td>
</tr>
<tr>
<td>8.4</td>
<td>Die Beziehung zwischen PM10- und Schwebestaubkonzentration</td>
</tr>
<tr>
<td>8.5</td>
<td>Trend der TSP-Konzentration 1991-2004 ..</td>
</tr>
<tr>
<td>8.6</td>
<td>Die Abhängigkeit der Schadstoffbelastung von der Windrichtung</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Kontinuierliche Schwebestaub-Daten ..</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Gasförmige Schadstoffe ...</td>
</tr>
<tr>
<td>8.6.3</td>
<td>PM10 (Tagesmittelwerte) ..</td>
</tr>
<tr>
<td>8.7</td>
<td>Die Abhängigkeit der PM10- und Schwebestaubbelastung von der Windgeschwindigkeit</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Kontinuierliche Staub-Messdaten ...</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Gasförmige Schadstoffe ...</td>
</tr>
<tr>
<td>8.7.3</td>
<td>PM10 (Tagesmittelwerte) ..</td>
</tr>
<tr>
<td>8.8</td>
<td>Die Abhängigkeit der PM10- und Schwebestaubbelastung vom Temperaturgradienten</td>
</tr>
<tr>
<td>8.9</td>
<td>Die Abhängigkeit der PM10- und Schwebestaubbelastung von der Niederschlagsmenge</td>
</tr>
<tr>
<td>8.10</td>
<td>Mittlere Tagesgänge ...</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Einfluss des Straßenverkehr ..</td>
</tr>
<tr>
<td>8.10.2</td>
<td>Gasförmige Schadstoffe ...</td>
</tr>
<tr>
<td>8.10.3</td>
<td>Kontinuierliche Staub-Daten ..</td>
</tr>
</tbody>
</table>
8.11 Mittlere Wochengänge ..99
8.11.1 Wochengang des Verkehrs ...100
8.11.2 Wochengang der NOx-Belastung ..101
8.11.3 Wochengang der PM10-Belastung ..101
8.11.4 Wochengang der PM10-Grenzwertüberschreitungen ...103
8.12 Einfluss von Punktquellen ...104
8.13 Schadstofftransport aus Slowenien ..104
8.13.1 SO$_2$- und Staub-Emissionen ...105
8.13.2 SO$_2$-Belastungsepisoden ..106
8.13.3 Erhöhte PM10-Belastung in Lavamünd ...107
8.13.4 Räumlicher und zeitlicher Zusammenhang der PM10- und SO$_2$-Belastung108
8.13.5 Korrelationen zwischen PM10 und SO$_2$..110
8.13.6 Möglicher Staub-Transport aus Slowenien - Zusammenfassung ...111
8.14.1 Stickstoffoxide ...113
8.14.2 Schwefeldioxid ..114
8.14.3 Schwebestaub ...114
8.15 Resümee ...115

9 CHEMISCHE ZUSAMMENSETZUNG DER PM10-FRAKTION ...117
9.1 Ausgewählte Tage ..117
9.2 Ergebnisse der chemischen Analysen ..117
9.3 Diskussion der einzelnen Tage ..120
9.3.1 Wetterlage ..120
9.3.2 Immission ..123
9.3.3 Chemische Analysen ..124
9.4 Resümee ...126
9.5 Österreichweiter Vergleich ..127
9.6 Interpretation ..128

10 FAKTOREN, DIE ZU DEN GRENZWERTÜBERSCHREITUNGEN GEFÜHRT HABEN ...131
10.1 Räumliche Herkunftszuordnung der PM10-Belastung ..131
10.1.1 Möglicher (Fern-)Transport von PM10 aus Slowenien ..131
10.1.2 Horizontale Abgrenzung ...132
10.1.3 Vertikale Abgrenzung ..133
10.2 Sektorale und räumliche Zuordnung der PM10-Belastung zu Emissionen von PM10, NOx, SO$_2$ und NH$_3$..135
10.3 Von Grenzwertüberschreitungen vermutlich betroffenes Gebiet ...138

11 VORAUSSICHTLICHES SANIERUNGSGEBIET ..141
12 MÖGLICHE MASSNAHMEN ... 143
12.1 Straßenverkehr ... 145
12.1.1 Maßnahmen im Rahmen des IG-L .. 146
12.1.2 Maßnahmen außerhalb des IG-L .. 149
12.2 Heizungsanlagen (Hausbrandemissionen) .. 144
12.3 Anlagen (Industrie, Gewerbe) ... 158
12.3.1 Maßnahmen im Rahmen des IG-L .. 159
12.3.2 Maßnahmen außerhalb des IG-L .. 159
12.4 Bauwirtschaft .. 159
12.5 Off-Road-Verkehr ... 160
12.6 Mineralrohstoffwirtschaft ... 161
12.7 Landwirtschaft .. 161
12.8 Verwendung bestimmter Stoffe, Zubereitungen und Produkte - Maßnahmen im Rahmen des IG-L ... 161
12.9 Maßnahmen zur Verminderung der Emissionen der Vorläufersubstanzen sekundärer Aerosole ... 162
12.9.1 Maßnahmen zur Verminderung der SO\textsubscript{2}-Emissionen .. 162
12.9.2 Maßnahmen zur Verminderung der NO\textsubscript{x}-Emissionen .. 162
12.9.3 Maßnahmen zur Verminderung der NH\textsubscript{3}-Emissionen .. 162
12.10 Empfehlungen für weiterführende Untersuchungen ... 162
12.10.1 Meteorologie ... 162
12.10.2 PM10-Messung .. 163
12.10.3 Emissionen .. 163
13 INFORMATIONEN GEMÄSS RL 96/62/EG, ANHANG IV ... 165
14 LITERATUR .. 169

ANHANG 1: GRENZWERTE, ZIELWERTE UND ALARMWERTE DES IG-L 173
ANHANG 2: DARSTELLUNG VON BELASTUNGS-EPISODEN MIT PM10-TMW ÜBER 50 µG/M3 175
ANHANG 3: TAGESMITTELWERTE DER PM10-KONZENTRATION, 2003 189
1 ZUSAMMENFASSUNG

1.1 Grenzwertüberschreitungen

Im Immissionsschutzgesetz Luft (IG-L, BGBI. I 115/97, idgF) sind in Anlage I für verschiedene Luftschadstoffe Grenzwerte zum Schutz der menschlichen Gesundheit festgelegt.

Für PM10 beträgt dieser Grenzwert 50 µg/m³ als Tagesmittelwert, wobei bis zu 35 Überschreitungen pro Kalenderjahr zulässig sind, sowie 40 µg/m³ als Jahresmittelwert.

Der Grenzwert für PM10 wurde im Jahr 2003 an der Messstelle Wolfsberg Hauptschule mit 70 Tagesmittelwerten über 50 µg/m³ überschritten. Das Umweltbundesamt wurde in Folge vom Amt der Kärntner Landesregierung mit der Erstellung einer Statuserhebung beauftragt.

An der Messstelle Wolfsberg Hauptschule wurde auch die Summe aus Grenzwert und Toleranzmarge gemäß Richtlinie 1999/30/EG – 60 µg/m³ im Jahr 2003 als Tagesmittelwert, wobei bis zu 35 Überschreitungen im Jahr zulässig sind – mit 37 Tagesmittelwerten über 60 µg/m³ überschritten. Bis Ende 2005 sind daher Pläne und Programme zur Vermeidung dieser Überschreitungen auszuarbeiten und an die Europäische Kommission zu übermitteln.

Neben der Stadt Wolfsberg selbst ist vermutlich das in Abbildung 1 dargestellte Gebiet von Grenzwertüberschreitungen betroffen (hochgerechnet anhand des Vergleiches der PM10-Daten von Magersdorf und St. Andrä i.L. mit Wolfsberg).

1 ab 2005: 30 Überschreitungen, ab 2010: 25 Überschreitungen
2 bei Blei und Benzol durch das Umweltbundesamt
1.2 Immissionen und Ausbreitungsbedingungen

Das Lavanttal ist eine Region mit sehr ungünstigen Verhältnissen, was die Schadstoffausbreitung betrifft. Die topographischen und die – dadurch bedingten – meteorologischen Gegebenheiten eines relativ kleinen Beckens südlich des Alpenhauptmanns – d. h. gegenüber Nord- bis Westströmung abgeschirmt – fördern v. a. im Winter die Anreicherung von Schadstoffen in Bodennähe.

Wie in Kapitel 6 dargestellt, ist das Lavanttal ebenso wie das Klagenfurter Becken von sehr hohen Inversionshäufigkeiten betroffen; im Winter treten Inversionen während ungefähr der Hälfte der Zeit auf, stabile Schichtung (d. h. ungünstige Ausbreitungsbedingungen) während ca. 90% der Zeit. Die Windgeschwindigkeit ist am Talboden sehr niedrig, was ebenfalls zu Schadstoffakkumulation im Lavanttal beiträgt. Die PM10-Belastung ist daher v. a. in den Wintermonaten erhöht (Abbildung 2).
Da das Lavanttal allseitig von Bergen umgeben und die Verbindung zum Drautal bzw. zum Klagenfurter Becken schmal ist, akkumulieren im Lavanttal emittierte Schadstoffe in diesem und können nicht in andere Gebiete abtransportiert werden. Diese topographische Situation schirmt allerdings das Lavanttal gegenüber Schadstoffferntransport weitestgehend ab.

Für die PM10-Belastung in Wolfsberg sind daher praktisch ausschließlich Emissionen im Lavanttal selbst verantwortlich; die abgeschlossene Beckenlage führt aber dazu, dass selbst relativ bescheidene Emissionen zu hohen PM10-Konzentrationen führen. Im Vergleich dazu bietet etwa das Klagenfurter Becken ein größeres Luftvolumen zur Verdünnung von Schadstoffen, sodass in Städten mit deutlich höheren Emissionen als Wolfsberg wie bspw. Villach niedrigere PM10-Belastungen erreicht werden.

1.3 Emissionen von PM10 im Bezirk und der Gemeinde Wolfsberg

In der nachfolgenden Tabelle sind die im Emissionskataster angeführten Quellen für PM10 dargestellt.
1.4 Herkunft der PM10-Belastung in Wolfsberg

Die Abschätzung der Beiträge der verschiedenen Verursachergruppen zur PM10-Belastung in Wolfsberg und ihrer geographischen Verteilung basiert auf der Verwendung folgender Informationen:

- Räumliche und zeitliche Verteilung der PM10-Belastung sowie von gasförmigen Schadstoffen im Lavanttal.
- Unterschiede der PM10-Belastung in Wolfsberg von der Inversionshöhe.
- Chemische Analysen von PM10-Filtern.
- Die räumliche Verteilung der PM10-Emissionen und der Emissionen von SO_2 und NOx als PM10-Vorläufer.

Die Untersuchung konzentriert sich auf die PM10-Belastung mit Tagesmittelwerten über 50 µg/m³. Die PM10-Belastung in Wolfsberg lässt sich auf Beiträge verschiedener Quellen in folgenden Gebieten aufgliedern:
1. der Stadt Wolfsberg;
2. Quellen am Talboden des Lavanttales außerhalb der Stadt Wolfsberg;
3. erhöht gelegenen Quellen im Lavanttal.

Aufbauend auf diese Auswertungen lässt sich nach aktuellem Kenntnisstand die PM10-Belastung, die an hoch belasteten Tagen (TMW über 50 µg/m³) in Wolfsberg gemessen wird, auf folgende Quellgruppen zurückführen:

- Hausbrand (Holz- und Kohleheizungen) trägt ca. 30 bis 40% zur PM10-Belastung bei (primäre Partikel);
- Straßenverkehr trägt ca. 25% bis 30% bei, davon mehr als 15% Abgasemissionen (v. a. auf der Südautobahn A2), wahrscheinlich über 5% Aufwirbelung und Abrieb (v. a. in der Stadt Wolfsberg – allerdings schwer zu quantifizieren) und ca. 5% durch Ammoniumnitrat (sekundäre Partikel) infolge von NOx-Emissionen des Straßenverkehrs;
- Industrie und Gewerbe tragen ca. 30% bei, davon ca. 15% primäre PM10-Emissionen und ca. 15% durch Ammoniumsulfat (sekundäre Partikel) infolge von SO₂-Emissionen der Industrie.

PM10-Transport sowie Transport von Vorläufersubstanzen sekundärer Partikel aus dem Ausland (Slowenien) spielt nach aktuellem Kenntnisstand an Tagen mit erhöhter PM10-Belastung eine untergeordnete Rolle.

1.5 Voraussichtliches Sanierungsgebiet

Als „Sanierungsgebiet“ im Sinne des §2(8) IG-L ist jener Teil des österreichischen Bundesgebietes abzugrenzen, in dem sich die Quellen der registrierten Schadstoffbelastung befinden, für die im Maßnahmenkatalog gemäß §10 Anordnungen getroffen werden können.

Da Emissionen im gesamten Lavanttal erheblich zur Belastung in Wolfsberg beitragen, sollte das Sanierungsgebiet daher das gesamte Lavanttal im Bezirk Wolfsberg umfassen.
1.6 Mögliche Maßnahmen

Maßnahmen sollten auf die wichtigsten PM10-Quellen im Lavanttal fokussiert werden:

- Hausbrand
- Straßenverkehr und Off-Road: Abgasemissionen, Aufwirbelung, NOx-Emissionen (Vorläufer für Ammoniumnitrat)
- Industrie (hier spielen u.a. die SO$_2$-Emissionen als Vorläufer für Ammoniumsulfat eine Rolle)

Die wichtigsten Maßnahmen zur Verminderung der Emissionen primärer Partikel lassen sich wie folgt zusammenfassen:

Hausbrand (Raumheizung)

- Forcierter Austausch von alten, mit Festbrennstoffen betriebenen Einzelöfen bspw. durch Förderprogramme;
- Verbesserung der spezifischen Emissionen von Biomasseheizungen, u. a. durch rasche Anlagenerneuerung und Wahl von geeigneten Brennstoffen;
- Landesweite Kontrolle und Dokumentation der Einhaltung der Emissionsgrenzwerte;
- Förderung von Fernwärme aus emissionsarmen Kraftwerken;
- Thermische Sanierung von Wohnbauten.

Straßenverkehr

- Maßnahmen im Rahmen des IG-L:
 - Geschwindigkeitsbeschränkungen v. a auf der A2 (u.U. bei erhöhten PM10-Konzentrationen);
 - Verkehrsbeschränkungen;
- Fahrzeugseitige Maßnahmen:
 - Verstärkte Kontrolle zur Verringerung des Anteils von technisch nicht einwandfreien Fahrzeugen im Straßenverkehr;
 - Förderung von Dieselpartikelfilter bzw. Partikelkatalysator;
 - Neuanschaffung emissionsarmer kommunaler Fahrzeuge;
- Maßnahmen zur Verringerung der Aufwirbelung:
 - Reduktion des Eintrages von Staub in Straßen;
 - Forcierung der Straßenreinigung nach dem Einsatz von Streumitteln;
- Systembezogene Maßnahmen zur Verringerung der Verkehrsleistung auf der Straße. Diese Maßnahmen verringern nicht nur die Emissionen von PM10 (Abgasemissionen und Nicht-Abgasemissionen) sondern auch von NOx von Treibhausgasen und von Lärm:
 - Konsequente Raumordnung: über kompakte Siedlungsstrukturen und die Vermeidung von verkehrserzeugenden Standorten;
 - Ausbau der Angebote des Öffentlichen Verkehrs auf regionaler Ebene (Verbindungen von Wolfsberg nach Klagenfurt, Völkmarkt,
Obersteiermark, Graz; regionales Verkehrskonzept im Lavanttal sowie in der Stadt Wolfsberg,

- Überregionale Lösungen zur Verminderung des Pkw-Verkehrs auf der Südautobahn A2 (u.a. Tourismus-Anreiseverkehr nach Kärnten und Norditalien);
- Verminderung des Lkw-Verkehrs durch Verlagerung des Güterverkehrs auf die Schiene;
- Bewusstseinsbildende Maßnahmen.

Maßnahmen auf nationaler Ebene:

- Lobbying auf EU-Ebene für Verschärfungen der PM- und NOx-Emissionsgrenzwerte für Pkw (EURO 5) und Lkw (EURO 6);
- Verminderung des Straßenverkehrs durch ökonomische Steuerungsinstrumente ("Kostenwahrheit" durch Bemautung des gesamten Straßennetzes in adäquater Höhe, Treibstoffbesteuerung);
- Schaffung der rechtlichen Voraussetzungen, um Fahrzeuge mit sehr hohen spezifischen Emissionen ("Superemitter") aus dem Verkehr ziehen zu können;
- Verminderung der fahrzeugspezifischen PM10-Emissionen durch verbesserte Motortechnologie und Abgasfilter.

Von Seiten der Kärntner Landesregierung sollte daher auf eine ehestmöglich Umsetzung dieser Maßnahmen zur Reduktion des Anteils regionalen Emissionen an PM10 gedrängt werden.

Off-Road-Verkehr

Die hohen spezifischen Emissionen von allen Off-Road-Fahrzeugen, die u. a. in der Industrie, im Mineralrohstoffabbau, in der Bauwirtschaft, in der Land- und der Forstwirtschaft eingesetzt werden, machen technische Maßnahmen in diesem Sektor erforderlich und müssen daher in erster Linie auf eine Absenkung der Emissionsfaktoren abzielen.

Industrie

In Hinblick auf die schmale Datenbasis der Emissionsmessungen bei der Mondi Packaging AG sollte in einem ersten Schritt die Messhäufigkeit erhöht werden. Die
Entscheidung über mögliche Nachrüstungsmaßnahmen sollte auf Basis der neuen Emissionswerte getroffen werden.

Mit dem Anschluss der Fa. Offner Holzindustrie (dem bis 2003 größten industriellen Emittenten in der Stadt Wolfsberg) an die Fernwärmeversorgung sowie der Abstellung des Kraftwerkes St. Andrä (Reserve) im Jahr 2004 wurden bereits bedeutende Reduktionen der industriellen Emissionen im Lavanttal erzielt; die PM10-Emissionen aus Industrie und Gewerbe gingen damit um ca. 28% zurück, die Gesamtemissionen des Bezirkes Wolfsberg um 13%. Unter Berücksichtigung des Beitrags sekundärer Aerosole ist durch diese Betriebsumstellungen ein Rückgang der PM10-Belastung in Wolfsberg um ca. 10% zu erwarten.

Bauwirtschaft

- Minderung der Staubaufwirbelung von unbefestigten Flächen, von Aushub- und Abbruchmaterial;
- Minderung der Emissionen bei Umschlag und Verarbeitung staubförmiger Baustoffe;
- Technische Maßnahmen zur Minderung der Abgasemissionen von Baumaschinen;
- Verminderung des Baustellenverkehrs.

Mineralrohstoffabbau

Landwirtschaft

Sekundäre Partikel werden im Wesentlichen aus SO₂, NOx und NH₃ gebildet.

Die bedeutendsten Emittenten von SO₂ sind im Lavanttal die Industrie (u.a. Mondi Packaging Frantschach AG), bei NOx der Straßenverkehr, bei NH₃ die Landwirtschaft.

Die Emissionen der Mondi Packaging AG in Frantschach (der bedeutendsten industriellen SO₂- und NOx-Quelle im Lavanttal) liegen allerdings im Fall von SO₂ innerhalb des BAT-Wertes, sodass bei den SO₂-Emissionen kein technisch und wirtschaftlich vertretbares Reduktionspotential besteht. Es sollten jedenfalls alle bedeutenden industriellen SO₂-Emittenten im Lavanttal dem Stand der Technik (BAT) entsprechend betrieben werden.
Maßnahmen zur Verminderung der PM10-Emissionen des Straßenverkehrs durch Verminderung der Verkehrsleistung tragen auch zu einer Verminderung der NOx-Emissionen bei. Durch den Einsatz von Dieselpartikelfiltern kann es zu einer Erhöhung des Verhältnisses NO\textsubscript{2} zu NO bei den Stickoxidemissionen kommen, wobei die Gesamt-NOx-Emissionen allerdings nicht erhöht werden. Der Einsatz von Dieselpartikelfiltern kann daher an verkehrsnahen Standorten zu einer Erhöhung der NO\textsubscript{2}-Konzentration führen, dies sollte bei der Maßnahmenbeurteilung beachtet werden.

Zur Verminderung der NH\textsubscript{3}-Emissionen sind v.a. in der Landwirtschaft Maßnahmen zu setzen. Dazu gehören bspw. der Filter- und Wäschereinsatz bei hohen Tierkonzentrationen, die Abdeckung der Güllelager und die optimierte Gülleausbringung.
2 EINLEITUNG

Im Immissionsschutzgesetz Luft (IG-L, BGBl. I 115/97 idgF) sind in Anlage I für verschiedene Luftschadstoffe Grenzwerte zum Schutz der menschlichen Gesundheit festgelegt. Für PM10 beträgt dieser 50 µg/m³ als Tagesmittelwert, wobei 35 Überschreitungen pro Kalenderjahr zulässig sind, sowie 40 µg/m³ als Jahresmittelwert. Die Grenzwerte für PM10 sind mit 7.7.2001 in Kraft getreten.

Die Überprüfung der Immissionskonzentration von PM10 erfolgt gemäß der Messkonzept-VO (BGBl. II 358/98, in der Fassung BGBl. II 344/2001) an ausgesuchten Messstellen.

Der Grenzwert für PM10 wurde im Jahr 2003 mit 70 Tagesmittelwerten über 50 µg/m³ an der Messstelle Wolfsberg Hauptschule überschritten.

Die Statuserhebung muss folgende Punkte umfassen:

- Darstellung der Immissionssituation (siehe Kapitel 8)
- Beschreibung der meteorologischen Situation (siehe Kapitel 6)
- Feststellung und Beschreibung der Emittenten (siehe Kapitel 5 und 10)
- Die Feststellung des voraussichtlichen Sanierungsgebietes (siehe Kapitel 11)

Das Umweltbundesamt wurde vom Amt der Kärntner Landesregierung beauftragt, in Form des vorliegenden Berichts eine Statuserhebung zu erstellen.

In Kapitel 3 wird darüber hinaus eine allgemeine Einführung zum Umweltproblem Schwebestaub gegeben, Kapitel 4 beschreibt die Messstellen im Lavanttal sowie die Datengrundlagen im Allgemeinen, in Kapitel 9 werden die Ergebnisse von chemischen Analysen von PM10-Filtern in Wolfsberg dargestellt, in Kapitel 12 werden mögliche Maßnahmen zur Reduktion der PM10-Belastung angeführt.

3 EINFÜHRUNG ZUM UMWELTPROBLEM SCHWEBESTAUB

Das nachfolgende Kapitel wurde aus UMWELTBUNDESAMT (2005) übernommen.

Luftgetragener Staub ist ein komplexes und heterogenes Gemisch aus festen und flüssigen Teilchen, die sich hinsichtlich ihrer Größe, Form, Farbe, chemischen Zusammensetzung, physikalischen Eigenschaften und ihrer Herkunft bzw. Entstehung unterscheiden. Zur Beschreibung der Belastung durch Staub wird aus hygienischen und rechtlichen Gründen üblicherweise die Massenkonzentration (zumeist in Mikrogramm pro Kubikmeter, µg/m³) verschiedener Größenfraktionen verwendet:

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>Bei PM10-Messverfahren ist das Ziel, eine Sammelcharakteristik zu verwirklichen, welche der thorakalen Fraktion (jener Masseanteil einatembarer Partikel, der über den Kehlkopf hinausgeht) entspricht. Bei diesen Verfahren sollen per definitionem 50 % der Partikel mit einem aerodynamischen Durchmesser von 10 µm erfasst werden; bei größeren Partikeln wird der gesammelte Anteil deutlich geringer, bei kleineren höher. Die derart bestimmte Staubfraktion ist eine Teilmenge des TSP. Im deutschen Sprachraum hat sich die Bezeichnung „Feinstaub“ für PM10 eingebürgert.</td>
</tr>
<tr>
<td>PM2,5</td>
<td>Bei diesem Verfahren sollen per definitionem 50 % der Partikel mit einem aerodynamischen Durchmesser von 2,5 µm erfasst werden (der etwa dem Anteil entspricht, der bis in die Alveolen gelangt); bei größeren Partikeln wird der gesammelte Anteil deutlich geringer, bei kleineren höher. Die derart bestimmte Staubfraktion ist eine Teilmenge des PM10 und sollte weitgehend der alveolengängigen Fraktion entsprechen.</td>
</tr>
<tr>
<td>PM10-2,5</td>
<td>Partikel, die größer als 2,5 µm aber kleiner als 10 µm sind. Im Englischen als „coarse fraction“ bezeichnet.</td>
</tr>
</tbody>
</table>

Weitere Größen, von denen allerdings – verglichen mit der Massenkonzentration – kaum Messdaten vorliegen, sind die Anzahl sowie die Oberfläche der Partikeln.

Grundsätzlich kann zwischen primären und sekundären Partikeln unterschieden werden. Erstere werden als primäre Emissionen direkt in die Atmosphäre abgegeben, letztere entstehen durch luftchemische Prozesse aus gasförmig emittierten Vorläufersubstanzen (z. B. Ammoniak, Schwefeldioxid, Stickstoffoxide).

In den nachfolgenden Kapiteln werden zunächst die (negativen) gesundheitlichen Auswirkungen von Staub näher beschrieben, anschließend werden verschiedene physikalische und chemische Eigenschaften sowie die Messmethoden dargelegt.
3.1 Gesundheitliche Auswirkungen von Partikeln

3.1.1 Methoden zur Untersuchung der Gesundheitsauswirkung von Luftschadstoffen

In epidemiologischen Studien wird die Korrelation verschiedener medizinischer Parameter wie etwa die Häufung von Krankenhauseinweisungen oder Todesfällen mit Umgebungseinflussgrößen wie etwa der Schadstoffexposition bzw. der Schadstoffkonzentration untersucht. Derartige Studien sind deshalb von hoher Aussagekraft, da

- die Exposition der Bevölkerung unter 'realen' Bedingungen stattfindet;
- sehr große Kollektive erfasst werden können, inklusive jener Personen, die besonders empfindlich auf Luftschadstoffe reagieren. Hierzu zählen – abhängig vom Luftschadstoff – Kinder, ältere Personen sowie durch existierende Krankheiten geschwächte Individuen;
- eine Extrapolation über Speziesgrenzen hinweg sowie zu niedrigeren Expositionskonzentrationen nicht notwendig ist.

Auch können die in epidemiologischen Untersuchungen gefundenen Zusammenhänge zwischen der Schadstoffbelastung und den Auswirkungen unter bestimmten Bedingungen zur Quantifizierung der Gesundheitsauswirkungen herangezogen werden [WHO, 2001].

Erkrankungen Herz-Kreislaufsystem

Im Gegensatz dazu dienen toxikologische Untersuchungen, die biologische Plausibilität der Schadstoffauswirkungen (oft einzelner Komponenten) zu untermauern oder abzuschwächen. Daneben geben sie auch wertvolle Hinweise zur Identifikation der konkreten Wirkungspfade und Wirkungsmechanismen.

Erst in einer Zusammenschau und Synthese dieser verschiedenen Ergebnisse lassen sich fundierte Aussagen über Art und Umfang der Auswirkungen von Luftschadstoffen auf die Gesundheit gewinnen.

3.1.2 Ergebnisse des aktuellen WHO Reviews

- Die Evidenz über einen Zusammenhang der Exposition gegenüber Schwebestaub und z. T. schwerwiegenden Gesundheitsauswirkungen ist weit stärker als vor wenigen Jahren angenommen.
- PM2,5 ist ein geeigneter Indikator zur Beschreibung der durch PM-Exposition verursachten Effekte, insbesondere in Bezug auf die Mortalität sowie Herz-Kreislauferkrankungen.
- Obwohl Feinstaub (PM2,5) einen stärkeren Zusammenhang mit einigen schweren Gesundheitsauswirkungen zeigt als die grobe Fraktion (PM10 minus PM2,5), gibt es Hinweise, dass auch diese in Beziehung mit bestimmten Gesundheitsauswirkungen steht.
- Bislang konnte keine Schwellenkonzentration abgeleitet werden, unter der keine Gefahr für die Gesundheit besteht.
- Bei den Auswirkungen auf die Mortalität handelt es sich nicht (nur) um vorgezogene Sterblichkeit (‘Harvesting’). Dies bedeutet, dass davon auszugehen ist, dass die Feinstaubexposition zu einer signifikanten Verkürzung der Lebenserwartung führt.
Einige Studien zeigen einen Zusammenhang zwischen einer Reduktion der PM-Belastung und einer Abnahme von Gesundheitseffekten.

Diverse Studien legen nahe, dass besonders folgende PM-Inhaltsstoffe toxikologisch wirksam sind:
- Bestimmte Metalle,
- Organische Verbindungen (wie etwa PAKs),
- Ultrafeine Partikel (< 100 nm) und
- Endotoxine.

Besonders kritische Quellen sind Abgasemissionen des Straßenverkehrs sowie Partikel aus der Verfeuerung von festen und flüssigen Brennstoffen.

Diese über weite Bereiche qualitativen Aussagen über die Auswirkungen von Luftschadstoffen werden durch folgende weitere Studien ergänzt:

Tabelle 3: Zusätzliches relatives Mortalitätsrisiko (und 95 % Konfidenzintervalle) bei einer Zunahme der PM10-Konzentration um 10 μg/m³

<table>
<thead>
<tr>
<th>Todesursache</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt-Mortalität</td>
<td>0,6 % (0,4 % - 0,8 %)</td>
</tr>
<tr>
<td>Atemwegserkrankungen</td>
<td>1,3 % (0,5 % - 2,1 %)</td>
</tr>
<tr>
<td>Sterblichkeit aufgrund von</td>
<td></td>
</tr>
<tr>
<td>Herz-Kreislauferkrankungen</td>
<td>0,9 % (0,5 % - 1,3 %)</td>
</tr>
</tbody>
</table>

3.2 Größenverteilung der Partikel

Schwebestaub umfasst im Allgemeinen alle luftgetragenen Partikel. Schwebestaub gelangt entweder direkt in die Luft (primäre Partikel) oder entsteht durch chemische Prozesse aus gasförmigen Vorläuferstoffen in der Atmosphäre (sekundäre Partikel). Die einzelnen Partikel können Größen zwischen 0,001 µm (1 nm) und 100 µm (= 0,1 mm) haben, ebenso variabel ist die chemische Zusammensetzung.

4 Aktuelle, hoch aufgelöste Berechnungen für Österreich liegen derzeit nicht vor.
Abbildung 4: Typische Größenverteilung und Entstehungsmechanismen von Partikeln
(nach KOUMTZIS & SAMARA, 1995)

Nukleationsklasse
Die Partikel der Nukleationsklasse (<0,1 µm Durchmesser) entstehen unmittelbar bei Verbrennungsprozessen durch Kondensation von heißen Dämpfen oder durch Kondensation von gasförmigen Vorläufersubstanzen. Sie haben eine relativ kurze Verweilzeit in der Atmosphäre, da sie mit anderen Partikeln agglomerieren können. Zwar tragen diese Partikel nur zu einem geringen Teil zur Gesamtmasse bei, jedoch dominieren sie hinsichtlich der Partikelanzahl (Abbildung 5).

Akkumulationsklasse
Die Partikel der Akkumulationsklasse (0,1 – 1 µm Durchmesser) entstehen durch Akkumulation und Aggregierung der äußerst feinen Partikel der Nukleationsklasse. Diese Klasse kann einen bedeutenden Beitrag zur gesamten Partikelmasse leisten. Partikel dieser Größenklasse haben aufgrund der niedrigen Depositionsgeschwindigkeit (siehe unten) eine hohe atmosphärische Verweilzeit und können somit auch über weite Distanzen transportiert werden.

Grobstaubklasse
Die Partikel der Grobstaubklasse wiederum entstehen durch mechanische Prozesse wie z. B. durch Aufwirbelung, Abrieb oder in küstennahen Gebieten auch durch Seesalz.

5 In manchen Publikationen werden Partikel unter 100 nm noch in einen Nukleationsmode und einen Aitkenmode unterteilt, wobei letzterer Partikel von 20 bis 100 nm umfasst.
Abbildung 5: Typische Partikelzahl- (oben), Oberflächen- (Mitte) und Volumenverteilung (unten) von städtischem Aerosol (nach SEINFELD & PANDIS, 1998)

Zur Beschreibung der Schwebestaubbelastung können unterschiedliche Parameter herangezogen werden. Aus messtechnischen, aber auch hygienischen Gründen wird bei Grenzwertfestlegungen und hygienischen Fragestellungen die Massenkonzentration in Abhängigkeit von der Größenfraktion als Messgröße verwendet.

3.3 Quellen

Die atmosphärische Schwebestaubbelastung hat i. A. viele verschiedene Quellen. Dies können natürliche und anthropogene Quellen sein.

Als wesentliche anthropogene Quellen sind folgende von Bedeutung:

- Verbrennungsprozesse: hier ist zu unterscheiden zwischen direkten Partikelemissionen (primäre Partikel) und Gas-zu-Partikel-Umwandlung aus \(\text{SO}_2 \), \(\text{NO}_x \), und organischen Verbindungen, die bei der Verbrennung entstehen können (sekundäre Partikel);
- mechanische Prozesse wie z. B. die Bearbeitung von Materialien aber auch die (Wieder-) Aufwirbelung von Bodenmaterial.

Bedeutende natürliche Quellen sind beispielsweise:

- Aufwirbelung und Fernverfrachtung von Wüstenstaub (im Schnitt treten derartige Ereignisse in Österreich an ein bis bis Tagen im Jahr auf, in südeuropäischen Ländern deutlich häufiger);
Aufwirbelung von Bodenmaterial; biologisches Material (Pollen, Bakterien, Pilzsporen, Abbauprodukte von Pflanzen, etc.). Dieses wird bei der chemischen Analyse dem organischen Kohlenstoff bzw. dem organischen Material zugewiesen, der Anteil macht allerdings im Winter nur einen kleinen Teil des organischen Materials aus; durch natürliche Quellen emittierte organische Verbindungen (etwa Monoterpene aus Wäldern) sowie NO\textsubscript{X}, SO\textsubscript{2} und NH\textsubscript{3}, die durch Gas-zu-Partikel-Umwandlungen zum sekundären Aerosol beitragen; Vulkane; natürliche Feuer (etwa Waldbrände).

Je nach Quelle kann auch zwischen gefassten und diffusen Emissionen unterschieden werden, wobei letztere oft wesentlich schwerer quantifizierbar sind.

wichtige Quellen

Verschiedene Quellen emittieren Schwebestaub mit einer unterschiedlichen Größenverteilung und unterschiedlicher chemischer Zusammensetzung. Generell gilt, dass pyrogene Quellen hauptsächlich Schwebestaub kleiner 1 µm emittieren, mechanisch generierter Schwebestaub jedoch oft Durchmesser > 1 µm aufweist. Dieser Sachverhalt lässt sich an der Größenverteilung der Partikel, die schematisch in Abbildung 6 dargestellt ist, sehen.

\(^6\) bei durch den Menschen veränderten Böden sollte diese Quelle zu den anthropogenen gerechnet werden.
3.4 Chemische Zusammensetzung von Partikeln

Ein Überblick über Ergebnisse chemischer Analysen von PM10 und PM2,5 in verschiedenen europäischen Ländern findet sich in PUTAUD (2002).

Tabelle 4 bietet eine (idealisierte) Darstellung des Zusammenhangs der Korngröße, der chemischen Zusammensetzung und der Quellen des Schwebestaubs.

<table>
<thead>
<tr>
<th></th>
<th>feine Partikel (< 2,5 µm)</th>
<th>grobe Partikel (> 2,5 µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entstehung aus:</td>
<td>Gasen</td>
<td>Größeren Partikeln</td>
</tr>
<tr>
<td>Entsteht bei</td>
<td>chemischen Umwandlungen,</td>
<td>mechanischen Vorgängen (Abrieb, Vermahlen, ..), Aufwirbelung</td>
</tr>
<tr>
<td></td>
<td>Nukleation, Kondensation,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Koagulation, Evaporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>von Nebel- und Wolken-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tropfen, in denen Gase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gelöst waren</td>
<td></td>
</tr>
<tr>
<td>Zusammensetzung</td>
<td>Sulfat, Nitrat, Ammonium,</td>
<td>Aufgewirbelter Staub (geogener</td>
</tr>
<tr>
<td></td>
<td>elementarer Kohlenstoff,</td>
<td>Staub, Straßenabrieb),</td>
</tr>
<tr>
<td></td>
<td>organischer Kohlenstoff,</td>
<td>Flugasche, Elemente der</td>
</tr>
<tr>
<td></td>
<td>Schwermetalle, Wasser</td>
<td>Erdkruste als Oxide (Si, Al, Ti, Fe), CaCO₃, NaCl,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meersalz, Pollen und Sporen,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>andere Teilchen biogenen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ursprungs,..</td>
</tr>
<tr>
<td>Löslichkeit</td>
<td>tw. löslich, oft hygroskopisch</td>
<td>oft unlöslich und nicht-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hygroskopisch</td>
</tr>
<tr>
<td>Quellen</td>
<td>Verbrennungsvorgänge</td>
<td>(Wieder-)aufwirbelung von</td>
</tr>
<tr>
<td></td>
<td>(Dieselruß, NOₓ, SOₓ, ..).</td>
<td>Staub von Straßen, Winderosion,</td>
</tr>
<tr>
<td></td>
<td>Landwirtschaft (NH₃),</td>
<td>Aufwirbelung durch anthropogene</td>
</tr>
<tr>
<td></td>
<td>atmosphärische</td>
<td>Tätigkeiten (Schüttvorgänge,</td>
</tr>
<tr>
<td></td>
<td>Transformationen (sek.</td>
<td>Befahren unbefestigter Straßen,</td>
</tr>
<tr>
<td></td>
<td>Partikel),</td>
<td>Bergbau, Abbruch- und</td>
</tr>
<tr>
<td></td>
<td>bestimmte industrielle</td>
<td>Bauarbeiten,..), biolog. Quellen, ..</td>
</tr>
<tr>
<td></td>
<td>Prozesse, Lässmittel</td>
<td></td>
</tr>
<tr>
<td>Verweildauer in der</td>
<td>Tage bis Wochen</td>
<td>Minuten bis Stunden</td>
</tr>
<tr>
<td>Atmosphäre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmosphärische</td>
<td>einige 100 bis > 1000 km</td>
<td>< 1 km bis einige 10 km</td>
</tr>
<tr>
<td>Transportdistanz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die quantitativ wichtigsten Inhaltsstoffe sind:

Ammonium, Sulfat, Nitrat (sekundäre anorganische Partikel): Diese Ionen entstehen in der Atmosphäre durch chemische Umwandlungsprozesse aus den Vorläufersubstanzen NH₃, SO₂ und NOₓ.

⁷ Non methane volatile organic compounds (flüchtige organische Verbindungen ohne Methan)
Ein nicht unerheblicher Teil an EC und OC kann an verkehrsbelasteten Standorten auch aus dem Reifenabrieb stammen.

Na, K, Ca, Mg, Cl: Na und Cl sind insbesondere im Winter oft auf den Einsatz von Aufgussmitteln zurückzuführen; Kalium kann ein Tracer für Biomassefeuerungen sein, während Ca und Mg in erster Linie in der groben Fraktion (mineralisches Material) zu finden sind (Quellen: Straßenabrieb, Einsatz von Streusplitt, Erosion).

Mineralische Komponenten: diese können aus Winderosion, aufgewirbelteltem Straßenstaub, Mineralrohstoffabbau, Baustellen usw. stammen. Da bei der Messung von PM mittels Gravimetrie und nachfolgender Inhaltsstoffanalyse zumeist Quarzfaserfilter verwendet werden, ist die Analyse dieser Komponenten nicht ohne weiteres möglich. Die mineralischen Komponenten sind bei diesen Analysen Teil des „nicht-analysierten Rest“.

Fe, Zn, Pb, Cu, Ni, Cd, Sb: Schwermetalle stammen aus unterschiedlichen Quellen und lassen sich als Tracer einsetzen.

<table>
<thead>
<tr>
<th>Element</th>
<th>Quelle</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>Verkehr: Abrieb von Bremsbacken und Bremsscheiben (+Cr), tritt zusammen mit Cu und Zn auf, Schienenverkehr</td>
<td>geogen: Schiefer (Hämaitit), Fe-Carbonate, Pyrit Industrie: Zundermaterial (Quelle: Auskleidung von Kessel, Walzwerke), falls globular: Metallverarbeitung, Rostschutzfarben (Hämaitit), Magnetkies aus Kraftwerksasche (FeS)</td>
</tr>
<tr>
<td>Zn</td>
<td>Verkehr: Bremsbeläge + Reifenabrieb Industrie: Verbrennungsanlage (MVA, kalorische Kraftwerke), Verzinkereien, Batterien, Reduktionsmittel und Industrieabfälle, Verpackungsmaterialien; ubiquitär: Bauschutt (weiße Farbe zuführend)</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Industrie: Herstellung bzw. Verwendung von Rostschutzfarben, Bleikristall, Glasuren, Farben, Hüttenwerke, Stahlwerke</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>Verkehr: Abrieb Bremsbeläge (Hauptquelle von Cu im städtischen Raum)</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>Verkehr: Bremsabrieb Industrie: Verbrennung von Schweröl, Metallherstellung, Katalyse, Herstellung von Ni-Cd-Batterien, Widerstände, Co-Ni-Dauermagnete</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>Industrie: Herstellung bzw. Verwendung von Farben, Glas, Oberflächenschutz für Leitmetalle, Metalle (z. B. Schrauben), Pigmente, Ni-Cd-Batterien, Kunststoffe (gelb, orange)</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>Verkehr: Abrieb aus Bremsbelägen</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Chemische Zusammensetzung der Emissionen wichtiger Quellen

Partikel aus Aufwirbelung und Straßenabrieb bestehen naturgemäß aus den in der Region vorkommenden bzw. in den Straßen enthaltenen oder aufgebrachten (Streusplitter) mineralischen Komponenten.

Hausbrand Hausbrandpartikel entstehen vor allem bei der Verbrennung von festen Brennstoffen (Kohle, Holz) und bei der Verbrennung von Heizöl. Die Partikel, die bei der Holzverbrennung entstehen, setzen sich aus organischem Kohlenstoff und elementarem Kohlenstoff zusammen (meist ist der Anteil an organischem Kohlenstoff wesentlich höher als jener an elementarem Kohlenstoff), der Rest sind anorganische Aschen. Bei letzteren dominiert Kalium, daneben kommen auch noch die Elemente Na, Fe und Mn vor, bei Kohle zudem Si und Ca [MORAWSKA, 2002].

3.6 Senken von Partikeln

Verweilzeit bis 10 Tage Abhängig von der Größe bzw. dem aerodynamischen Durchmesser sind verschiedene Mechanismen wirksam, die die Partikel aus der Luft entfernen. Partikel in der Nukleationsklasse werden hauptsächlich durch Agglomeration zu oder an größere Partikel entfernt, Partikel der Akkumulationsklasse durch Auswaschung und diejenigen der Grobstaubklasse durch Sedimentation. Wie man in Abbildung 7 erkennen kann, hat die Verweilzeit ein deutliches Maximum bei Partikel der Akkumulationsklasse mit einer Partikelgröße von etwa 0,1 µm (bei 10 µm ca. einen Tag, bei 2,5 µm 2 bis 4 Tage). Die Verweilzeit dieser Partikel beträgt etwa zehn Tage, diese können daher in der Atmosphäre über große Entfernungen (1.000 km und mehr) transportiert werden. Partikel in der

[8] Im Zuge der Statuserhebungen Lienz und Klagenfurt wurde auch der Sb-Gehalt der PM10 Proben bestimmt. Als grober Richtwert kann für den gesamten Beitrag des Bremsenabriebs die 50fache Sb-Konzentration angenommen werden [PALME, 2004]. Damit ergibt sich an der verkehrsbelasteten Station Klagenfurt Völkermarkterstr. ein Anteil des Reifenabries im Mittel von 0,8 %, an der ebenfalls verkehrsbelasteten Station Lienz Amlacherkreuzung von 0,4 %.

Abbildung 7: Verweilzeit von Partikeln in Abhängigkeit vom aerodynamischen Durchmesser (nach WILSON & SAMARA, 1996)

3.7 Messmethoden

Mit der RL 1999/30/EG und dem IG-L (2001) wurden erstmals Grenzwerte für PM10 sowie die Verpflichtung zur Messung - auch von PM2,5 (beide als...
Tagesmittelwerte) - festgelegt. Bei der Messung dieser Staubfraktionen werden Ansaugköpfe mit definierter Abscheidecharakteristik verwendet (siehe Tabelle 2).

Referenzmethode - Gravimetrie

Referenzmethode für die Bestimmung der PM10-Konzentration ist gemäß RL 1999/30/EG die in der EN 12341\(^9\) beschriebene Probenahme (Abscheidung der Partikel auf einem Filter) mit nachfolgender gravimetrischer Staubmassebestimmung. Am häufigsten werden in Österreich dazu Digitel High Volume Sampler eingesetzt, die mit Glas- oder Quarzfaserfiltern von 150 mm Durchmesser bestückt sind und ein Probenahmevermögen von etwa 750 m\(^3\)/Tag aufweisen. Der Waagraum zur Konditionierung der Filter vor und nach der Probenahme ist normgerecht auf 20 °C ±0,5 °C Lufttemperatur sowie 50 % ±5 % relative Luftfeuchte geregelt. Die Messergebnisse sind auf Umgebungstemperatur und Umgebungsdruck bezogen.

Die PM10-Messung gemäß IG-L erfolgt sowohl mit der gravimetrischen Methode als auch mit kontinuierlichen Messgeräten, die bereits für die TSP-Messung verwendet wurden und für die PM10-Messung mit einem Ansaugkopf entsprechender Abscheidecharakteristik ausgerüstet wurden.

kontinuierliche Messung

Folgende kontinuierliche Staubmessgeräte kommen an österreichischen Messstellen zum Einsatz:

- Monitore, bei denen der angesaugte Staub auf einem Filterstreifen abgeschieden wird und der Zuwachs an Masse durch die steigende Absorption von β-Strahlung bestimmt wird (meist Geräte der Typen FH62 I-N oder FH62 I-R)
- Monitore, bei denen der Zuwachs der Massebelegung auf einem Filter in einem Schwingkreis eine Veränderung der Eigenfrequenz bewirkt; TEOM - Geräte\(^10\).

Bei den kontinuierlichen Messgeräten wird die Ansaugleitung auf rund 40 °C beheizt, um einen Einfluss von Luftfeuchte auf die Messung zu minimieren.

Voraussetzung für die Verwendung kontinuierlicher Messgeräte für die PM10-Messung ist allerdings, dass der betreffende Messnetzbetreiber nachweisen kann, dass das eingesetzte Verfahren ein zur Referenzmethode vergleichbares Ergebnis liefert, d. h. eine feste Beziehung zur Referenzmethode aufweist. Der Nachweis (Bestimmung des so genannten Standortfaktors bzw. einer lokalen Standortfunktion) erfolgt durch Parallelmessungen vor Ort.

\(^9\) Luftqualität – Felduntersuchung zum Nachweis der Gleichwertigkeit von Probenahmeverfahren für die PM10 -Fraktion von Partikeln

\(^10\) Tapered Element Oscillating Microbalance.

3.8 Rechtliche Regelungen

Die Europäische Kommission hat zur Begrenzung des gesundheitlichen Risikos durch die Exposition gegenüber Schwebestaub verbindliche Immissionsgrenzwerte für die Feinstaubbelastung (gemessen als PM10) in der EU-Richtlinie 1999/30/EG festgesetzt, welche bis Sommer 2001 von allen EU-Mitgliedstaaten in nationales Recht umgesetzt werden mussten. Die Richtlinie enthält für PM10 einerseits verbindliche Immissionsgrenzwerte, die spätestens 2005 einzuhalten sind, andererseits strengere, indikative Werte, die bis 2010 anzustreben sind. Weiters ist vorgesehen, dass innerhalb eines Reviews der genannten EU-Richtlinie u. a. zu prüfen ist, ob zusätzlich zu den Immissionsgrenzwerten für PM10 auch Grenzwerte für PM2,5 festzulegen sind. Um die dafür benötigten Informationen über die PM2,5-Belastung zu erlangen, ist die Messung der PM2,5-Konzentration an repräsentativen Standorten vorgeschrieben.

Tabelle 6: Staubgrenzwerte und Zielwerte zum Schutz der menschlichen Gesundheit gemäß IG-L

<table>
<thead>
<tr>
<th>Messgröße</th>
<th>Konzentration</th>
<th>Mittelungszeit</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP(^{11})</td>
<td>150 µg/m³</td>
<td>Tagesmittelwert</td>
<td>Grenzwert</td>
</tr>
<tr>
<td>PM10</td>
<td>50 µg/m³</td>
<td>Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: bis 2004: 35, von 2005 bis 2009: 30, ab 2010: 25</td>
<td>Grenzwert</td>
</tr>
<tr>
<td>PM10</td>
<td>40 µg/m³</td>
<td>Jahresmittelwert</td>
<td>Grenzwert</td>
</tr>
<tr>
<td>PM10</td>
<td>50 µg/m³</td>
<td>Tagesmittelwert; pro Kalenderjahr sind 7 Überschreitungen zulässig</td>
<td>Zielwert</td>
</tr>
<tr>
<td>PM10</td>
<td>20 µg/m³</td>
<td>Jahresmittelwert</td>
<td>Zielwert</td>
</tr>
</tbody>
</table>

Grenzwerte des IG-L und der EU-RL 1999/30/EG sind in Anhang 1 zusammen gestellt.
4 DATENGRUNDLAGE

4.1 Verwendete Messstellen, Zeitraum der Messungen

Darüber hinaus werden alle Schadstoffmesswerte in der östlichen Hälfte Kärntens in die Untersuchung einbezogen.

4.2 Untersuchungsgebiet

Als Untersuchungsgebiet im engeren Sinn wird das Lavanttal abgegrenzt (Abbildung 8). Darüber hinaus werden luftchemische und meteorologische Messungen aus ganz Kärnten für die vorliegende Studie verwendet.

4.3 Verwendete Messdaten

Die an den Messstellen der Kärntner Landesregierung durchgeführten Messungen entsprechen sowohl hinsichtlich der angewandten Methodik (gravimetrische Methode) wie auch der Prüfstufen der ausgewerteten Daten den gesetzlichen Anforderungen des IG-Luft sowie der Verordnung zum Messkonzept (siehe Kapitel 3.7).

In der Untersuchung werden Messdaten der in Tabelle 7 und Abbildung 8 bzw. Abbildung 9 angegebenen Stationen verwendet.
Tabelle 7: Luftgüte- und meteorologische Messstellen

<table>
<thead>
<tr>
<th>Messstelle</th>
<th>geogr. Länge</th>
<th>geogr. Breite</th>
<th>Seehöhe (m)</th>
<th>gemessene Komponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolfsberg</td>
<td>14°50'40"</td>
<td>46°50'08"</td>
<td>460</td>
<td>TSP, PM10, NO, NO₂, SO₂, O₃, CO, Wind, T</td>
</tr>
<tr>
<td>St. Andrä 1)</td>
<td>14°49'20"</td>
<td>46°45'50"</td>
<td>430</td>
<td>TSP, PM10, NO, NO₂, Wind, T</td>
</tr>
<tr>
<td>Magersdorf 1)</td>
<td>14°50'19"</td>
<td>46°47'02"</td>
<td>415</td>
<td>PM10</td>
</tr>
<tr>
<td>St. Georgen</td>
<td>14°53'30"</td>
<td>46°42'30"</td>
<td>540</td>
<td>TSP, NO, NO₂, SO₂, O₃, Wind, T</td>
</tr>
<tr>
<td>Frantschach St. Gertraud</td>
<td>14°50'53"</td>
<td>46°51'57"</td>
<td>700</td>
<td>SO₂, Wind, T</td>
</tr>
<tr>
<td>Frantschach Zellach</td>
<td>14°51'25"</td>
<td>46°51'51"</td>
<td>620</td>
<td>SO₂, Wind, T</td>
</tr>
<tr>
<td>Soboth</td>
<td>15°02'36"</td>
<td>46°40'32"</td>
<td>1080</td>
<td>NO, NO₂, O₃, Wind, T</td>
</tr>
<tr>
<td>Bleiburg</td>
<td>14°47'42"</td>
<td>46°35'08"</td>
<td>480</td>
<td>SO₂, O₃, Wind, T</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr.</td>
<td>14°17'54"</td>
<td>46°37'32"</td>
<td>440</td>
<td>TSP, NO, NO₂, SO₂, O₃, CO, Wind, T</td>
</tr>
<tr>
<td>Klagenfurt Völkermarkterstr.</td>
<td>14°19'11"</td>
<td>46°37'33"</td>
<td>445</td>
<td>TSP, PM10, NO, NO₂, CO, Wind, T</td>
</tr>
<tr>
<td>Klagenfurt Kreuzbergl</td>
<td>14°17'22"</td>
<td>46°37'51"</td>
<td>550</td>
<td>O₃, Wind, T</td>
</tr>
<tr>
<td>Görtschach 2)</td>
<td>14°25'14"</td>
<td>46°43'14"</td>
<td>840</td>
<td>Wind, T</td>
</tr>
<tr>
<td>Magdalensberg</td>
<td>14°25'37"</td>
<td>46°43'48"</td>
<td>1050</td>
<td>Wind, T</td>
</tr>
<tr>
<td>Wietersdorf</td>
<td>14°31'44"</td>
<td>46°50'31"</td>
<td>810</td>
<td>TSP, NO, NO₂, SO₂, O₃, CO, Wind, T</td>
</tr>
<tr>
<td>Gerlitzen</td>
<td>13°54'54"</td>
<td>46°41'37"</td>
<td>1895</td>
<td>O₃, Wind, T</td>
</tr>
<tr>
<td>Gurtschitschach 2)</td>
<td>14°40'49"</td>
<td>46°38'07"</td>
<td>440</td>
<td>PM10</td>
</tr>
<tr>
<td>Lavamünd 2)</td>
<td>14°59'14"</td>
<td>46°36'30"</td>
<td>420</td>
<td>PM10</td>
</tr>
<tr>
<td>Vorhegg</td>
<td>12°58'19"</td>
<td>46°40'47"</td>
<td>1020</td>
<td>PM10, NO, NO₂, SO₂, O₃, CO, Wind, T</td>
</tr>
</tbody>
</table>

1) **PM10-Messung von 13.8.2003 bis 31.8.2004**

2) **Beginn der PM10-Messung im Rahmen des Projektes AQUELLA am 15.10.2004**
Abbildung 8: Immissionsmessstellen im östlichen Kärnten

Abbildung 9: Immissionsmessstellen in Kärnten, die zu Auswertungen in dieser Studie herangezogen wurden
4.3.1 Luftgütemessstelle Wolfsberg Hauptschule

Die Klagenfurter Straße hat einen DTV von etwa 20.600 KFZ, davon etwa 520 Lkw (Verkehrszählung 2000, Mittelwert aus zehn händischen Verkehrszählungen)\(^\text{12}\).

Abbildung 10: Messstelle Wolfsberg, Blick nach Norden (links), Blick nach Südwesten (rechts), im Hintergrund ist die Hauptschule zu sehen. Die Messstelle ist mit einem Kreuz markiert

Abbildung 11: Stadtplan des Zentrums von Wolfsberg, die Messstelle ist mit einem Punkt markiert (Quelle: http://www.staedte-verlag.at)

\(^{12}\) Die Daten wurden freundlicherweise von Hrn. Doujak, Abteilung 17-Projektierung des Amtes der Kärntner Landesregierung zur Verfügung gestellt.
4.3.2 Messstelle St. Andrä

Abbildung 12: Luftgütemessstelle St. Andrä, linkes Bild: Blick Süden, rechtes Bild: Blick nach Norden. Die Messstelle ist mit einem Kreuz markiert

4.3.3 Messstelle St. Georgen

Die Messstelle St. Georgen befindet sich auf einem Hügel (Herzogberg) in etwa 100 m Höhe über dem Lavanttal auf der östlichen Talschulter. An der Messstelle, die seit 1990 besteht, werden TSP, NOx, SO₂, und Ozon sowie meteorologische Parameter gemessen.

4.3.4 Temporäre Messstellen Magersdorf, Gurtschitschach und Lavamünd

Im Rahmen des AQUELLA-Projektes der TU-Wien wurden am 15.10.2004 die PM10-Messungen in Gurtschitschach und in der Nähe von Lavamünd in Betrieb genommen.

Die Messstelle Gurtschitschach befindet sich ca. 4 km südöstlich der Stadt Völkermarkt auf einem Feld am Nordufer des Völkermarkter Stausees.

Die Messstelle Lavamünd befindet sich ebenfalls auf einem Feld unweit der Drau, ca. 5 km südöstlich von Lavamünd. Beide Messstellen können als ländliche Messstellen klassifiziert werden.

4.4 Bewertung der Datenlage

4.4.1 Immissionsdaten

Die Untersuchung der PM10-Belastung im Lavanttal wird dadurch erschwert, dass PM10-Messwerte nur als gravimetrische Tagesmittelwerte zur Verfügung stehen, die kontinuierliche Messung aber die Fraktion Schwebestaub erfasste, sodass diese Messwerte nicht direkt vergleichbar sind. Allerdings weisen auch kontinuierlich und gravimetrisch bestimmte PM10-Messungen u. U. deutliche Unterschiede zueinander auf.

4.4.2 Meteorologiedaten

Die vertikale Temperaturverteilung als wesentliches Maß für die Ausbreitungsbedingungen lässt sich im Lavanttal selbst nur zwischen den zwei Messstellen St. Andrä und St. Georgen beurteilen. Für größere Höhenbereiche müssen Messstellen im Klagenfurter Becken (Magdalensberg) oder noch weiter westlich (Gerlitzen) herangezogen werden, deren Repräsentativität für das Lavanttal möglicherweise beschränkt ist.

4.4.3 Emissionsdaten

Vom Amt der Kärntner Landesregierung wurden auf Zählsprengel disaggregierte Auswertungen des Emissionskatasters Kärnten für den Bezirk Wolfsberg zur Verfügung gestellt. Damit liegt ein wesentliches Instrument zur Identifikation der Hauptquellen der PM10-Belastung vor. Etwas eingeschränkt wird die Aussagekraft allerdings dadurch, dass zum Zeitpunkt der Erstellung dieses Berichts noch keine Dokumentation oder Spezifikation des Emissionskatasters zur Verfügung stand. Es können daher kaum Aussagen über die Berechnungsgrundlagen (Aktivitätsdaten, Emissionsfaktoren), über die Qualität der Daten oder über den Beitrag
5 BESCHREIBUNG DER EMISSIONSQUELLEN

5.1 Emissionen im Bezirk Wolfsberg

5.1.1 PM10-Emissionen

Vom Amt der Kärntner Landesregierung wird derzeit ein Emissionskataster erstellt, dessen vorläufige Ergebnisse dem Umweltbundesamt zur Verfügung gestellt wurden. Ausgewertet wurden die Emissionsdaten für den Bezirk Wolfsberg auf Zählsprengelbasis. Der Emissionskataster beinhaltet die Quellen:

- Verkehr (nur Abgas, keine Nicht-Abgasemissionen\(^{13}\))
- Hausbrand (private Haushalte)
- Industrie
- Gewerbe

Nicht im Emissionskataster enthalten sind Emissionen aus landwirtschaftlicher Tätigkeit und aus der Bautätigkeit. Wie verschiedene Studien zeigen, können diese beiden Quellgruppen allerdings einen erheblichen Anteil an den PM10-Emissionen haben (siehe auch Kapitel 5.2).

Nähere Angaben zu den Spezifikationen des Emissionskatasters lagen zum Zeitpunkt der Erstellung dieser Studie noch nicht vor; die obigen Angaben beruhen auf persönlichen Mitteilungen von DI Ewald Sallinger, Amt der Kärntner Landesregierung.

Tabelle 8 gibt einen Überblick über die Staubemissionen im Bezirk Wolfsberg. Da sich die Emissionsangaben des Emissionskatasters auf Gesamtschwebestaub, nicht jedoch auf die PM10-Fraktion beziehen, wurden die PM10-Emissionen der verschiedenen Sektoren mit Faktoren auf PM10 umgerechnet.

\(^{13}\) Die Nichtabgasemissionen des Straßenverkehrs umfassen die Emissionen aus Abrieb (Straßen, Reifen- und Bremsenabrieb) sowie Aufwirbelung

nichtenthaltene Quellen

hohe Unsicherheit bei Nicht-Abgasemissionen
Tabelle 8: Staub- bzw. PM10 Emissionen im Bezirk Wolfsberg bzw. in der Stadt Wolfsberg gemäß Emissionskataster in Tonnen/Jahr (Bezugsjahr 2000). Nicht-Abgasemissionen des Verkehrs geschätzt

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Staub Bezirk Wolfsberg</th>
<th>Umrechnungsfaktor</th>
<th>PM10 Bezirk Wolfsberg</th>
<th>PM10 Stadt Wolfsberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehr (nur Abgas)</td>
<td>33</td>
<td>1</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Verkehr-Nichtabgas</td>
<td>100</td>
<td>0,33</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>78</td>
<td>0,95</td>
<td>74</td>
<td>25</td>
</tr>
<tr>
<td>Industrie+Gewerbe</td>
<td>138</td>
<td>0,90</td>
<td>124</td>
<td>26</td>
</tr>
<tr>
<td>Summe</td>
<td>349</td>
<td></td>
<td>264</td>
<td>73</td>
</tr>
</tbody>
</table>

Gemäß Tabelle 8 tragen demnach **Industrie und Gewerbe** im Bezirk Wolfsberg etwa knapp die Hälfte zu den PM10-Emissionen der im Emissionskataster (inkl. der abgeschätzten Nicht-Abgasemissionen des Verkehrs) erfassten Quellen bei, jeweils ein Viertel stammt aus dem Straßenverkehr und dem Hausbrand.

Punktquellen
Abbildung 14: PM10-Emissionen im Lavanttal, bezogen auf den Dauersiedlungsraum, ohne Punktquellen

Hausbrandemissionen

Die Hausbrandemissionen werden von Holzöfen dominiert. Von den etwa 74 t bzw. 25 t/a PM10 im Bezirk bzw. in der Gemeinde Wolfsberg emittiert werden, entfallen etwa 95% auf den Brennstoff Holz. Die restlichen Emissionen stammen größtenteils aus der Kohleverbrennung; Heizöl und Gas spielen so gut wie keine Rolle. Eine genauere Differenzierung der Hausbrandemissionen liegt nicht vor.

5.1.2 Abschätzung der PM10-Emissionen an einem Wintertag

Da v. a. die Hausbrandemissionen starke jahreszeitliche Unterschiede aufweisen, wurden die PM10-Emissionen auch für einen durchschnittlichen Wintertag abgeschätzt (Tabelle 9). Die Faktoren zur Umrechnung der Jahresemissionen auf die Emissionen eines Wintertags wurden aus UMWELTBRUNDESMANT (2004f) übernommen.

Tabelle 9: PM10-Emissionen im Bezirk und in der Gemeinde Wolfsberg an einem Wintertag, kg

<table>
<thead>
<tr>
<th></th>
<th>Faktor</th>
<th>Bezirk</th>
<th>Gemeinde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehr</td>
<td>1,15/365</td>
<td>103 kg</td>
<td>11%</td>
</tr>
<tr>
<td>Verkehr Nicht-</td>
<td>1,15/365</td>
<td>103 kg</td>
<td>11%</td>
</tr>
<tr>
<td>Abgas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hausbrand</td>
<td>1,9/365</td>
<td>387 kg</td>
<td>41%</td>
</tr>
<tr>
<td>Industrie+Gewerbe</td>
<td>1/365</td>
<td>340 kg</td>
<td>36%</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>933 kg</td>
<td>100%</td>
</tr>
</tbody>
</table>

5.1.3 Emissionen von PM-Vorläufersubstanzen

sekundäre Aerosole

Neben primären PM-Emissionen tragen auch noch Emissionen von NOX, SO\textsubscript{2}, NH\textsubscript{3} und NMVOC durch die Bildung von sekundären anorganischen (Ammoniumsulfat
und Ammoniumnitrat) bzw. von sekundären organischen Aerosolen in unterschiedlichem Ausmaß zur PM10-Belastung bei. Im Emissionskataster für den Bezirk Wolfsberg werden neben Staub auch noch die Emissionen von NOx, SO₂ und VOC angeführt. In Tabelle 10 sind die jährlichen Emissionen dieser Schadstoffe angeführt.

Tabelle 10: NOx, SO₂ und VOC Emissionen unterteilt nach Verursachern des Bezirks und der Gemeinde Wolfsberg, Tonnen/Jahr

<table>
<thead>
<tr>
<th></th>
<th>NOx</th>
<th>SO₂</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehr</td>
<td>747</td>
<td>246</td>
<td>101</td>
</tr>
<tr>
<td>Hausbrand</td>
<td>125</td>
<td>48</td>
<td>369</td>
</tr>
<tr>
<td>Industrie + Gewerbe</td>
<td>703</td>
<td>67</td>
<td>99</td>
</tr>
<tr>
<td>Summe</td>
<td>1575</td>
<td>361</td>
<td>569</td>
</tr>
</tbody>
</table>

Gemäß Emissionskataster werden im Bezirk Wolfsberg 1.575 t NOx pro Jahr emittiert, davon nicht ganz die Hälfte (47%) aus dem Verkehr, 45% aus Industrie und Gewerbe. Der Hausbrand trägt nur zu einem unbedeutenden Teil zu den NOx-Emissionen bei. Die NOx-Emissionen der Gemeinde Wolfsberg betragen etwa ein Fünftel der Emissionen des Bezirks, davon stammen etwa 70% aus dem Verkehr. Vorbehaltlich der oben angeführten Unsicherheiten beim Vergleich einer mit aktuellen Emissionsfaktoren einzeln herausgerechneten Strecke – der Südautobahn A2 – mit den im Emissionskataster angegebenen Gesamtemissionen für den Verkehr kann gesagt werden, dass ein Großteil (rund 640 t/a bzw. 40%) der NOx-Emissionen aus dem Verkehr von der Südautobahn A2 stammen. Auf dieser können ca. 75% der NOx-Emissionen dem (hohen) Lkw-Anteil zugeordnet werden. Im übrigen Straßenverkehr (unter der Annahme, dass der Lkw-Anteil vergleichbar hoch wie auf der B70 ist) sind ca. 30% der NOx-Emissionen aus dem Straßenverkehr den Lkws zuzuordnen.

Bei Industrie und Gewerbe entfallen 96% (676 t) der NOx-Emissionen auf Punktequellen (Heizwerke und industrielle Quellen), davon entfallen wiederum etwa 82% (550 t) auf die Mondi Packaging Frantschach AG.

Die SO₂-Emissionen im Bezirk Wolfsberg betrugen pro Jahr etwa 270 t, davon entfallen etwa 2/3 auf Industrie und Gewerbe, 22% auf den Hausbrand sowie 10% auf den Verkehr. Bei Industrie und entfallen 89% (165 t) auf Punktequellen, davon wiederum 60% (100 t) auf die Mondi Packaging Frantschach AG, 13% entfallen auf das Kraftwerk St. Andrä, das allerdings nur Mitte 2004 in die stille Reserve genommen wurde. Auf die Gemeinde Wolfsberg entfällt etwa ein Viertel der SO₂-Emissionen im Bezirk.

Bei den VOC-Emissionen, die in Summe etwa 570 t betragen, stammen 64% aus dem Hausbrand, der Rest zu etwa gleichen Teilen aus dem Verkehr sowie Industrie und Gewerbe. Etwa ein Drittel der VOC-Emissionen im Bezirk werden durch die Gemeinde Wolfsberg verursacht.

Über die Emissionen von NH₃, einem weiteren wesentlichen Luftschadstoff der zur Bildung von sekundären anorganischen Aerosolen beiträgt, liegen keine Emissionsdaten vor. Hauptverursacher der NH₃-Emissionen ist üblicherweise die Landwirtschaft, hier vor allem die Tierhaltung und der Düngemitteleinsatz.
5.2 Staubemissionsinventur Österreich

Neben den Emissionen aus Verbrennungsprozessen, die noch relativ genau abgeschätzt werden können, wurden auch Emissionen aus mechanischen Prozessen sowie aus diffusen industriellen Quellen berücksichtigt. Letztere entstehen i. A. bei verschiedenen Materialmanipulationen wie z. B. bei Schneidprozessen, Schüttgutumschlägen, Prozessen mit flüssigen Metallen etc. oder bei Erosionsprozessen. Die Abschätzung der Höhe der diffusen Emissionen ist mit deutlich größeren Unsicherheiten behaftet, jedoch tragen diese bis zu etwa 50% zu den gesamten PM10-Emissionen bei.

| Tabelle 11: PM10-Emissionen in Österreich in 1000 Tonnen (Verkehr ohne Aufwirbelung) |
|---|------|------|------|------|
| Energieversorgung | 1,0 | 0,7 | 1,0 | 1,0 |
| Kleinverbraucher | 12,0 | 11,5 | 10,3 | 11,0 |
| Industrie | 19,5 | 19,6 | 20,7 | 20,1 |
| Verkehr | 6,3 | 7,4 | 8,2 | 8,7 |
| Landwirtschaft | 7,7 | 7,6 | 7,1 | 7,1 |
| Sonstige | 0,1 | 0,1 | 0,1 | 0,1 |
| **Summe** | **46,5** | **46,9** | **47,4** | **48,0** |

Aus den oben genannten Studien geht hervor, dass die bedeutendsten Quellgruppen für diffuse Emissionen der Umschlag von Schüttgütern in der Industrie, das Bauwesen und die landwirtschaftliche Feldbearbeitung sind, die sich gleichzeitig durch besonders hohe Unsicherheiten auszeichnen. Unter den gefassten Quellen ist die Verbrennung von Holz jene Quelle, welche die höchsten Partikelemissionen aufweist. Industrielle Punktemissionen können zwar lokal hohe Bedeutung haben, für die Summe Österreichs erweisen sie sich aber als weniger relevant.
6 DIE METEOROLOGISCHE SITUATION

6.1 Übersicht über die Witterung, Dez. 2002 bis Dez. 2003

15 nach http://www.ZAMG.ac.at: Klima-Monatsübersicht
Mittels, gebietsweise fiel praktisch kein Niederschlag, in Klagenfurt 26% des langjährigen Durchschnitts.

März 2003

April 2003

Mai 2003

Juni 2003

Juli 2003
Der Juli 2003 war außerordentlich warm – verglichen mit der Klimaperiode 1961-90 lag im Großteil Österreichs die Temperatur um 1,5 bis 2,5°C über dem langjährigen Mittel, in Klagenfurt um +2,4°C; besonders warm war es im Hochgebirge, auf dem Sonnblick betrug die Abweichung +3,6°C. Die Niederschlagsmengen erreichten im Großteil Österreichs ein durchschnittliches Niveau (Klagenfurt 99%, im Lavanttal
Regenreicher war es im Mühlviertel und in Osttirol, wohingegen in der Südsteiermark, in Ostkärnten, im Waldviertel und im Unterinntal besonders wenig Regen fiel.

Bis 28.8. fiel in ganz Österreich sehr wenig Niederschlag, erst ab 29.8. gab es verbreitet Regen. Die Monatssumme des Niederschlags lag im Großteil Österreichs unter 75% des Klimawertes, besonders trocken war es im Raum Wien mit weniger als 25%. Lediglich zwischen Osttirol und der Südsteiermark fielen – vor allem dank der intensiven Schauer ab dem 29.8. – ungefähr durchschnittliche Regenmengen, gebietsweise in Kärnten um 180% des Klimamittelwerts, in Klagenfurt 228%.

Der November 2003 war außerordentlich warm; im Südosten Österreichs und im
Bereich der Niederen Tauern lag die Temperatur im Monatsmittel um 3°C oder mehr über dem Klimamittel (in Klagenfurt um 3,4°C), im Nordosten um ca. 2°C, im nördlichen Salzburg und im Rheintal um bis 1,5°C. Überdurchschnittlich warm war es im Osten Österreichs sowie im Hochgebirge durchgehend ab 17.11. Nördlich des Alpenhauptkamms und im Osten fiel sehr wenig Niederschlag (25 bis 75% des langjährigen Mittels), dagegen wies der Bereich südlich des Alpenhauptkamms außerordentlich hohe Regenmengen auf, in Klagenfurt 112%. In Osttirol und Obergärnten fiel bis zum Dreiachen der üblichen Niederschlagsmenge, konzentriert auf den 1. und 26. November.

Dezember 2003

6.2 Windverhältnisse

sehr niedrige Windgeschwindigkeiten

Die Windverhältnisse im Lavanttal werden einerseits durch die Kanalisierung des Windes in Nord-Süd-Richtung, d. h. talparallel, gekennzeichnet, andererseits durch außerordentlich niedrige Windgeschwindigkeiten. In Wolfsberg betrug die Häufigkeit von Kalmen (Windgeschwindigkeit unter 0,5 m/s) in den Jahren 2002 und 2003 54%, in St. Andrä 75%.

Bei sonnigem Wetter bildet sich im Lavanttal in der Regel ein Talwindsystem mit Südwind tagsüber und Nordwind nachts aus, die Windgeschwindigkeiten sind allerdings, verglichen z. B. mit Talwindzirkulationen im Inntal oder Muralt, sehr niedrig und liegen auch tagsüber selten über 1 m/s. Fesselballonmessungen von KAISER (1987) zeigen allerdings, dass bei Talauswind mehrere 100 m über Talboden höhere Windgeschwindigkeiten auftreten können.

Bei nebeligem oder bedecktem Wetter überwiegt in Wolfsberg sehr schwacher südlicher Wind.

Wie die Windrosen (siehe Abbildung 30, Kapitel 8.6) zeigen, tritt in Wolfsberg Nordnordwest- und Südsüdostwind – ausgewertet während der Zeit mit Windgeschwindigkeiten ab 0,5 m/s – ungefähr gleich häufig auf, während in St. Andrä Südsüdostwind deutlich überwiegt, wobei zu berücksichtigen ist, dass die Auswertung in Abbildung 30 nur 25% der Zeit umfasst. Die zweithäufigste Windrichtung in St. Andrä, Westnordwest, dürfte dem Hangabwind von der westlichen Talschulter zuzuordnen sein.

Die etwas höher gelegene Messstelle St. Georgen Herzogberg (540 m, Talboden 410 m) ist deutlich „windiger“ mit einer Kalmenhäufigkeit von 18%. An dieser Messstelle treten Nordwest- und Südostwind während der restlichen Zeit ca. gleich häufig auf; diese Richtungen entsprechen dem Talverlauf des Lavanttales östlich von St. Paul.

6.3 Ausbreitungsbedingungen

Der neutrale Temperaturgradient liegt je nach Feuchteverhältnissen zwischen dem trockenadiabatischen Temperaturgradienten (ca. 1°C/100 m) und dem feuchtadiabatischen Temperaturgradienten (ca. 0,6°C/100 m); bei feuchtadiabatischen Verhältnissen spielen Kondensationsprozesse eine Rolle. Eine Statistik der Feuchtverhältnisse über dem Klagenfurter Becken liegt nicht vor. Da winterliche Hochdruckwetterlagen mit stark erhöhter PM10-Belastung mit hohen relativen Feuchten in Bodennähe verbunden sind, kann angenommen werden, dass feuchtadiabatische Verhältnisse deutlich überwiegen. Bei einer Gewichtung feuchtadiabatischer Verhältnisse mit 75% gegenüber trockenadiabatischen mit 25% wird daher für die Analyse der atmosphärischen Stabilität ein Temperaturgradient von 0,7°C/100 m als „neutral“ verwendet.

Die Ausbreitungsbedingungen werden einerseits anhand der Temperaturmessdaten der Messstellen St. Andrä (430 m) und St. Georgen im Lavanttal (540 m) beurteilt (siehe Tabelle 12), andererseits werden die Temperaturmessstellen im Klagenfurter Becken herangezogen, da im Lavanttal oberhalb von St. Georgen keine Messstelle zur Verfügung steht. Die in unterschiedlichen Höhen gelegenen Messstellen Klagenfurt Flughafen, Kreuzbergl, Eberdorf, Göriach, Magdalensberg und – etwas weiter westlich gelegen – Gerlitzen (siehe Tabelle 7) erlauben eine detaillierte Untersuchung der vertikalen Temperaturschichtung. Im Lavanttal selbst stehen keine entsprechenden Temperaturprofil-Messstellen zur Verfügung, doch kann davon ausgegangen...
werden, dass die Temperaturschichtung im Klagenfurter Becken auch für das Lavanttal repräsentativ ist.

In Tabelle 12 werden die Tagesmittelwerte der Temperatur von St. Andrä und St. Georgen im Lavanttal des Zeitraumes von Mai 2002 bis April 2004 ausgewertet, aufgetrennt nach den Wintermonaten (Oktober bis März) und den Sommermonaten. Inversionen treten in diesem Temperaturprofil (110 m) im Winter mit 50% Häufigkeit auf, stabile Schichtung (entspricht einer Temperaturdifferenz von ca. 0,8°C) mit 79%; im Sommer sind ungünstige Ausbreitungsbedingungen wesentlich seltener. Die Inversionshäufigkeit zwischen St. Andrä und St. Georgen entspricht im Winter ungefähr jener über dem Klagenfurter Becken, die Häufigkeit stabiler Schichtung ist etwas geringer (zwischen Klagenfurt und Göriach bzw. Magdalensberg über 85%).

Tabelle 12: Häufigkeit von Inversionen (obere Zahl) und stabiler Temperaturschichtung (untere Zahl) zwischen St. Andrä und St. Georgen im Lavanttal, %

<table>
<thead>
<tr>
<th></th>
<th>Winter</th>
<th>Sommer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversion</td>
<td>50%</td>
<td>15%</td>
</tr>
<tr>
<td>stabile Schichtung</td>
<td>79%</td>
<td>62%</td>
</tr>
</tbody>
</table>

Als stabile Temperaturschichtung wird ein Temperaturgradient („unten“ minus „oben“) bewertet, welcher kleiner ist als 0,7 K/100 m. Dies entspricht für den Höhenbereich zwischen Flughafen und Eberdorf einer Temperaturdifferenz von 1,5°C, zwischen Flughafen und Göriach 2,7°C, zwischen Flughafen und Magdalensberg 4,2°C und zwischen Magdalensberg und Gerlitzen 6,3°C.

Im Höhenbereich bis zum Magdalensberg (1000 m) treten Inversionen ca. während der Hälfte der Zeit auf, im Höhenbereich zwischen Magdalensberg und Gerlitzen dagegen nur in 17%. Stabile Schichtung dagegen tritt in allen Teilen des Temperaturprofils mit einer Häufigkeit von 73-89% etwa gleich oft auf.

\(^{17}\) Die Beurteilung von TMW führt zwar – in Hinblick auf die deutlichen Tagesgänge der Temperatur – zu Ungenauigkeiten, erlaubt allerdings aus rechentechnischen Gründen die Bearbeitung eines wesentlich längeren Zeitraums als die HMW.
Tabelle 13: Häufigkeit von Inversionen und stabiler Temperaturschichtung über dem Klagenfurter Becken, Winter 2001/02 (Okt. – März), %, auf HMW-Basis

<table>
<thead>
<tr>
<th></th>
<th>Inversion</th>
<th>stabil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klagenfurt Flughafen – Eberdorf</td>
<td>51</td>
<td>73</td>
</tr>
<tr>
<td>Klagenfurt Flughafen – Göriach</td>
<td>53</td>
<td>85</td>
</tr>
<tr>
<td>Klagenfurt Flughafen – Magdalensberg</td>
<td>50</td>
<td>84</td>
</tr>
<tr>
<td>Magdalensberg – Gerlitzen</td>
<td>17</td>
<td>89</td>
</tr>
</tbody>
</table>

Beschränkt man die Untersuchung auf das Winterhalbjahr 2001/02, ergibt sich für das Höhenprofil bis zum Magdalensberg eine Inversionshäufigkeit um 50%. Im Bereich zwischen Magdalensberg und Gerlitzen treten während 13% der Zeit Inversionen auf. Die Aggregation der Temperaturwerte zu TMW führt somit zu einer Überschätzung der stabilen Fälle gegenüber der Auswertung von HMW, was primär daran liegt, dass die meist über Mittag auftretende Labilisierung keine Berücksichtigung findet.

Tabelle 14: Häufigkeit von Inversionen (obere Zahl) und stabiler Temperaturschichtung (untere Zahl) über dem Klagenfurter Becken, %, auf TMW-Basis

<table>
<thead>
<tr>
<th></th>
<th>Jän. 01 – März 02</th>
<th>Okt. 01 – März 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klagenfurt Flughafen – Eberdorf</td>
<td>Inversion 26</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>stabil 74</td>
<td>86</td>
</tr>
<tr>
<td>Klagenfurt Flughafen – Göriach</td>
<td>Inversion 28</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>stabil 93</td>
<td>96</td>
</tr>
<tr>
<td>Klagenfurt Flugh. – Magdalensberg</td>
<td>Inversion 21</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>stabil 89</td>
<td>96</td>
</tr>
<tr>
<td>Magdalensberg – Gerlitzen,</td>
<td>Inversion 8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>stabil 91</td>
<td>96</td>
</tr>
</tbody>
</table>

Aus den obigen Auswertungen wird ersichtlich, dass die Ausbreitungsbedingungen im Klagenfurter Becken mit einer Inversionshäufigkeit von etwa 50% und einer Häufigkeit von annähernd 100% von stabilen Schichtungen im Winterhalbjahr als sehr ungünstig zu betrachten sind.

Am häufigsten treten somit Inversionen unterhalb von Göriach (840 m) bzw. Magdalensberg (1050 m) auf, d. h. Inversionsobergrenzen von ca. 400 bis 600 m über Boden (Klagenfurt Flughafen 450 m Seehöhe). Bodeninversionen unterhalb von Eberdorf sind etwas seltener; im Höhenbereich oberhalb des Magdalensberges treten kaum Inversionen auf.
Neben dem Temperaturprofil ist die Windgeschwindigkeit entscheidend für das Ausmaß mechanischer Turbulenz (und damit der Mischungshöhe), die auch bei stabiler Temperaturschichtung einen gewissen vertikalen Austausch herbeiführen kann. Besonders schlechte Ausbreitungsbedingungen bestehen daher bei stabiler Temperaturschichtung und niedriger Windgeschwindigkeit.

Der Luftmassenaustausch über das Drautal mit Slowenien wird in Hinblick auf dessen Enge und krummen Verlauf unterhalb von Lavamünd als gering bewertet. Transport mit PM10 belasteter Luftmassen aus Slowenien (als Hauptquellen kommen die Kraftwerke Šoštanj und Trbovlje in Frage) wird u.a. in Kapitel 8.14 dargestellt.

6.4 Luftmassen und Fronten

Bei der Diskussion der Belastungsepisoden und der Herkunftsregionen von Ferntransport werden die Begriffe Luftmassen und Fronten verwendet.

Definition Luftmassen
Luftmassen lassen sich durch ihre Herkunftsregionen charakterisieren, die die in ihnen vorherrschenden relativ einheitlichen Eigenschaften wie Temperatur, Feuchte, Temperaturschichtung oder Schadstoffkonzentration beeinflussen. Luftmassen kontinentaler Herkunft – d. h. aus Osteuropa – zeichnen sich v. a. im Winter durch niedrige Temperatur, ungünstige Ausbreitungsbedingungen und i.d.R. hohe PM10-Konzentrationen aus, Luftmassen maritimer Herkunft, d. h. vom Atlantik, durch niedrige PM10-Konzentrationen.

Definition Front
Fronten stellen Luftmassengrenzen dar, an denen sich die Eigenschaften von Luftmassen „sprunghaft“ (d. h. auf einer Distanz um 100 km oder weniger) ändern. Fronten bewegen sich i.d.R. und führen zu einer Veränderung u.a. der gemessenen Schadstoffbelastung, wenn sie sich über eine Messstelle hinweg bewegen. Fronten sind i.d.R. mit Tiefdruckgebieten verbunden, in deren Zentrum sie zusammenlaufen und um das sie sich (auf der Nordhemisphäre) im Gegenuhrzeigersinn bewegen.

Von einer *Warmfront* spricht man, wenn die Luftmasse hinter der Front wärmer ist als davor, im umgekehrten Fall von einer *Kaltfront*.

Fronten sind i.d.R. mit Hebungsprozessen verbunden, welche zu verstärkter Kondensation, Wolkenbildung und Niederschlägen führten.

Über dem europäischen Kontinent holt häufig die Kaltfront die davor liegende Warmfront ein, sodass die dazwischen liegende Warmluftmasse abgehoben wird. In diesem Fall spricht man von einer *okkludierten* („geschlossenen“) *Front (Okklusion)*, die zwei (Kalt)Luftmassen mit unterschiedlichen Eigenschaften trennt.
Als „maskierte“ Kaltfront bezeichnet man eine Kaltfront oder Okklusion, die zwar in einigen 100 m über Boden eindeutig Kaltfrontcharakter hat, am Boden jedoch auf eine kältere Luftmasse trifft und hier Warmfrontcharakter besitzt. Maskierte Kaltfronten gleiten häufig bei winterlichen Inversionslagen auf bodennahe Kaltluftschichten auf und verschärfen dabei die flacher werdende Inversion, ehe die bodennahe Kaltluft verdrängt wird.

Als „Frontalzone“ werden Fronten bezeichnet, die stationär sind (also keinen eindeutigen Warm- oder Kaltfrontcharakter besitzen), auf verschiedenen Abschnitten ihrer Länge aufgrund unterschiedlicher Bewegungsrichtung teilweise Warm- und Kaltfrontcharakter aufweisen, oder Situationen, in denen mehrere Fronten dicht hintereinander auftreten.
7 DIE IMMISSIONSSITUATION IN ÖSTERREICH

7.1 Die PM10-Belastung im Jahr 2002 im österreichweiten Vergleich

Die Überschreitungen des Grenzwertes für PM10 (mehr als 35 TMW über 50 µg/m³) in Österreich im Jahr 2002 sind in Tabelle 15 zusammen gestellt.

Der als Jahresmittelwert definierte Grenzwert von 40 µg/m³ wurde lediglich an den beiden Messstellen Graz Don Bosco und Graz Mitte überschritten. Das Grenzwertkriterium für den Tagesmittelwert ist somit wesentlich strenger als der Jahresmittelwert von 40 µg/m³.
Tabelle 15: Grenzwertüberschreitungen bei PM10 im Jahr 2002 (35 TWM >50 µg/m³ sind zulässig, Jahresmittelwert 40 µg/m³; JMW>40 µg/m³ sind fett gedruckt)

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Messstelle</th>
<th>Anzahl TMW > 50 µg/m³</th>
<th>max. TMW (µg/m³)</th>
<th>JMW (µg/m³)</th>
<th>Betrieb gem. IG-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Eisenstadt</td>
<td>39</td>
<td>84</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>B</td>
<td>Illmitz</td>
<td>45</td>
<td>104</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>B</td>
<td>Kittsee</td>
<td>53</td>
<td>87</td>
<td>31</td>
<td>ja</td>
</tr>
<tr>
<td>K</td>
<td>Klagenfurt</td>
<td>58</td>
<td>127</td>
<td>37</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Amstetten</td>
<td>42</td>
<td>135</td>
<td>33</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Hainburg</td>
<td>63</td>
<td>83</td>
<td>33</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Himberg</td>
<td>52</td>
<td>90</td>
<td>33</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Klosterneuburg</td>
<td>61</td>
<td>90</td>
<td>33</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Mannswörth</td>
<td>51</td>
<td>126</td>
<td>38</td>
<td>nein</td>
</tr>
<tr>
<td>N</td>
<td>Mistelbach</td>
<td>44</td>
<td>101</td>
<td>32</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Mödling</td>
<td>48</td>
<td>94</td>
<td>30</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Schwechat</td>
<td>69</td>
<td>83</td>
<td>35</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Stixneusiedl</td>
<td>60</td>
<td>90</td>
<td>33</td>
<td>ja</td>
</tr>
<tr>
<td>N</td>
<td>Vösendorf</td>
<td>69</td>
<td>88</td>
<td>35</td>
<td>ja</td>
</tr>
<tr>
<td>BG Linz</td>
<td>Linz 24er Turm</td>
<td>52</td>
<td>116</td>
<td>32</td>
<td>ja</td>
</tr>
<tr>
<td>BG Linz</td>
<td>Linz Neue Welt</td>
<td>56</td>
<td>107</td>
<td>34</td>
<td>ja</td>
</tr>
<tr>
<td>BG Linz</td>
<td>Linz ORF-Zentrum</td>
<td>64</td>
<td>143</td>
<td>35</td>
<td>ja</td>
</tr>
<tr>
<td>BG Linz</td>
<td>Linz Römerberg</td>
<td>65</td>
<td>135</td>
<td>36</td>
<td>ja</td>
</tr>
<tr>
<td>BG Linz</td>
<td>Steyrregg</td>
<td>42</td>
<td>123</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>St</td>
<td>Bruck a.d.M.</td>
<td>52</td>
<td>203</td>
<td>32</td>
<td>ja</td>
</tr>
<tr>
<td>St</td>
<td>Gratwein</td>
<td>36</td>
<td>100</td>
<td>31</td>
<td>ja</td>
</tr>
<tr>
<td>BG Graz</td>
<td>Graz Don Bosco</td>
<td>131</td>
<td>229</td>
<td>51</td>
<td>ja</td>
</tr>
<tr>
<td>BG Graz</td>
<td>Graz Mitte</td>
<td>99</td>
<td>154</td>
<td>44</td>
<td>ja</td>
</tr>
<tr>
<td>BG Graz</td>
<td>Graz Ost</td>
<td>72</td>
<td>117</td>
<td>37</td>
<td>ja</td>
</tr>
<tr>
<td>St</td>
<td>Hartberg</td>
<td>59</td>
<td>119</td>
<td>37</td>
<td>ja</td>
</tr>
<tr>
<td>St</td>
<td>Köflach</td>
<td>85</td>
<td>154</td>
<td>40</td>
<td>ja</td>
</tr>
<tr>
<td>St</td>
<td>Peggau</td>
<td>38</td>
<td>118</td>
<td>34</td>
<td>ja</td>
</tr>
<tr>
<td>T</td>
<td>Brixlegg</td>
<td>41</td>
<td>132</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>T</td>
<td>Hall i.T.</td>
<td>45</td>
<td>101</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>T</td>
<td>Innsbruck Reichenau</td>
<td>50</td>
<td>173</td>
<td>31</td>
<td>ja</td>
</tr>
<tr>
<td>T</td>
<td>Innsbruck Zentrum</td>
<td>40</td>
<td>134</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>T</td>
<td>Lienz</td>
<td>37</td>
<td>141</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>T</td>
<td>Vomp – an der Leiten</td>
<td>37</td>
<td>97</td>
<td>29</td>
<td>ja</td>
</tr>
<tr>
<td>T</td>
<td>Wörgl</td>
<td>42</td>
<td>100</td>
<td>28</td>
<td>ja</td>
</tr>
<tr>
<td>V</td>
<td>Feldkirch</td>
<td>63</td>
<td>241</td>
<td>38</td>
<td>ja</td>
</tr>
<tr>
<td>W</td>
<td>Wien Erdberg</td>
<td>55</td>
<td>108</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Wien Liesing</td>
<td>57</td>
<td>92</td>
<td>31</td>
<td>ja</td>
</tr>
</tbody>
</table>

Abbildung 15 gibt einen Überblick über die PM10 Messstellen sowie die Anzahl der Tage mit TMW>50 µg/m³.

Im Nordosten Österreichs weisen nicht nur Wien, sondern auch zahlreiche Kleinstädte in Niederösterreich eine sehr hohe PM10-Belastung auf. Wie die sehr hohe Belastung in Illmitz zeigt, dürfte dafür ein relativ hoher Anteil großflächiger Hintergrundbelastung bzw. Ferntransport von Osten eine wesentliche Rolle spielen. In Kittsee und Hainburg lässt sich auch ein nennenswerter Anteil von grenzüberschreitendem Transport aus dem Ballungsraum Bratislava vermuten. Eine Abschätzung der Hintergrundbelastung in anderen Regionen ist mit den vorliegenden Daten noch nicht möglich. Im Raum Linz, aber auch in Leoben und Brixlegg, liefern industrielle Emissionen einen wesentlichen Beitrag zur hohen PM10-Belastung.

Grundsätzlich weisen verkehrsnahe städtische Messstellen die höchste PM10-Belastung auf, wofür Graz Don Bosco, Wien Erdberg, Innsbruck Reichenau und Feldkirch auffallende Beispiele sind. An außerorts gelegenen, auch sehr stark verkehrsbelasteten Messstellen wie Gärberbach, Vomp A12 und Zederhaus ist dagegen die PM10-Belastung vergleichsweise niedrig und liegt unter dem Grenzwert.

Die RL 1999/30/EG sieht für PM10 eine zeitlich variable Toleranzmarge vor. Die Summe aus Grenzwert und Toleranzmarge der RL 1999/30/EG für PM10 – 65 µg/m³ als TMW, wobei bis zu 35 Überschreitungen pro Kalenderjahr erlaubt sind – wurde 2002 an den Messstellen Graz Don Bosco, Graz Mitte, Graz Ost und

Abbildung 15: Anzahl der Tage mit PM10-Tagesmittelwerten über 50 µg/m³, 2002
Feldkirch überschritten. In Graz Don Bosco wurde auch die Summe aus Grenzwert und Toleranzmarge für den Jahresmittelwert von PM10 (46 µg/m³) überschritten.

7.2 Die PM10-Belastung im Jahr 2003 im österreichweiten Vergleich

Der Grenzwert für PM10 gemäß IG-L – mehr als 35 Tagesmittelwerte über 50 µg/m³ - wurde im Jahr 2003 an 50 (von 90) gemäß IG-L betriebenen Messstellen sowie an einer nicht gemäß IG-L betriebenen Messstelle überschritten. Abbildung 16 zeigt die Anzahl der TMW über 50 µg/m³.

Von Grenzwertüberschreitungen war nahezu das gesamte Bundesgebiet betroffen:
- alle vier Messstellen im Burgenland;
- vier von fünf Messstellen in Kärnten;
- neun von 23 Messstellen in Niederösterreich;
- neun von 15 Messstellen in Oberösterreich;
- zwei von sieben Messstellen in Salzburg;
- zehn von 19 Messstellen in der Steiermark;
- acht von zwölf Messstellen in Tirol;
- zwei von fünf Messstellen in Vorarlberg;
- alle sechs Messstellen in Wien;

Abbildung 16: PM10, Anzahl der TMW über 50 µg/m³, 2003

<table>
<thead>
<tr>
<th>Gebiet</th>
<th>Messstelle</th>
<th>Messziel</th>
<th>Messgerät</th>
<th>max. TMW (µg/m³)</th>
<th>TMW > 50 µg/m³</th>
<th>JMW (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Eisenstadt</td>
<td>IG-L</td>
<td>ß</td>
<td>151</td>
<td>53</td>
<td>33</td>
</tr>
<tr>
<td>B</td>
<td>Illmitz</td>
<td>IG-L</td>
<td>g</td>
<td>137</td>
<td>48</td>
<td>31</td>
</tr>
<tr>
<td>B</td>
<td>Kittsee</td>
<td>IG-L</td>
<td>ß</td>
<td>147</td>
<td>48</td>
<td>29</td>
</tr>
<tr>
<td>B</td>
<td>Oberwart</td>
<td>IG-L</td>
<td>ß</td>
<td>89</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>K</td>
<td>Klagenfurt Völkermarkterstr.</td>
<td>IG-L</td>
<td>g</td>
<td>99</td>
<td>74</td>
<td>38</td>
</tr>
<tr>
<td>K</td>
<td>Wolfsberg</td>
<td>IG-L</td>
<td>g</td>
<td>123</td>
<td>70</td>
<td>37</td>
</tr>
<tr>
<td>N</td>
<td>Amstetten</td>
<td>IG-L</td>
<td>T</td>
<td>112</td>
<td>91</td>
<td>39</td>
</tr>
<tr>
<td>N</td>
<td>Groß Enzersdorf</td>
<td>IG-L</td>
<td>T</td>
<td>128</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>N</td>
<td>Mannswörth</td>
<td>IG-L</td>
<td>T</td>
<td>134</td>
<td>43</td>
<td>33</td>
</tr>
<tr>
<td>N</td>
<td>Mödling</td>
<td>IG-L</td>
<td>T</td>
<td>127</td>
<td>43</td>
<td>31</td>
</tr>
<tr>
<td>N</td>
<td>Schwechat</td>
<td>IG-L</td>
<td>T</td>
<td>137</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>N</td>
<td>St. Pölten Eybnerstraße</td>
<td>IG-L</td>
<td>T</td>
<td>131</td>
<td>58</td>
<td>34</td>
</tr>
<tr>
<td>N</td>
<td>Stockerau</td>
<td>IG-L</td>
<td>T</td>
<td>124</td>
<td>45</td>
<td>33</td>
</tr>
<tr>
<td>N</td>
<td>Vösendorf</td>
<td>IG-L</td>
<td>T</td>
<td>97</td>
<td>52</td>
<td>36</td>
</tr>
<tr>
<td>N</td>
<td>Wiener Neustadt</td>
<td>IG-L</td>
<td>T</td>
<td>125</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>O</td>
<td>Enns Kristeint</td>
<td>IG-L</td>
<td>g</td>
<td>83</td>
<td>38</td>
<td>34</td>
</tr>
<tr>
<td>O</td>
<td>Linz 24er-Turm</td>
<td>IG-L</td>
<td>T</td>
<td>193</td>
<td>44</td>
<td>32</td>
</tr>
<tr>
<td>O</td>
<td>Linz Neue Welt</td>
<td>IG-L</td>
<td>g</td>
<td>165</td>
<td>76</td>
<td>37</td>
</tr>
<tr>
<td>O</td>
<td>Linz ORF-Zentrum</td>
<td>IG-L</td>
<td>T</td>
<td>172</td>
<td>80</td>
<td>38</td>
</tr>
<tr>
<td>O</td>
<td>Linz Römerberg</td>
<td>IG-L</td>
<td>T</td>
<td>161</td>
<td>75</td>
<td>39</td>
</tr>
<tr>
<td>O</td>
<td>Steyr</td>
<td>IG-L</td>
<td>T</td>
<td>131</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>O</td>
<td>Steyrregg</td>
<td>IG-L</td>
<td>g</td>
<td>167</td>
<td>49</td>
<td>32</td>
</tr>
<tr>
<td>O</td>
<td>Wels</td>
<td>IG-L</td>
<td>g</td>
<td>131</td>
<td>57</td>
<td>33</td>
</tr>
<tr>
<td>S</td>
<td>Hallein Hagerkreuzung</td>
<td>IG-L</td>
<td>g</td>
<td>105</td>
<td>49</td>
<td>32</td>
</tr>
<tr>
<td>S</td>
<td>Salzburg Rudolfplatz</td>
<td>IG-L</td>
<td>g</td>
<td>109</td>
<td>62</td>
<td>37</td>
</tr>
<tr>
<td>St</td>
<td>Bruck a.d.M.</td>
<td>IG-L</td>
<td>T</td>
<td>113</td>
<td>46</td>
<td>32</td>
</tr>
<tr>
<td>St</td>
<td>Graz Don Bosco</td>
<td>IG-L</td>
<td>ß</td>
<td>156</td>
<td>131</td>
<td>52</td>
</tr>
<tr>
<td>St</td>
<td>Graz Mitte</td>
<td>IG-L</td>
<td>T</td>
<td>143</td>
<td>129</td>
<td>48</td>
</tr>
<tr>
<td>St</td>
<td>Graz Nord</td>
<td>IG-L</td>
<td>T</td>
<td>134</td>
<td>69</td>
<td>37</td>
</tr>
<tr>
<td>St</td>
<td>Graz Ost</td>
<td>IG-L</td>
<td>ß</td>
<td>151</td>
<td>82</td>
<td>39</td>
</tr>
<tr>
<td>St</td>
<td>Graz Süd Tiergartenweg</td>
<td>IG-L</td>
<td>ß</td>
<td>144</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>St</td>
<td>Hartberg</td>
<td>IG-L</td>
<td>T</td>
<td>157</td>
<td>85</td>
<td>41</td>
</tr>
<tr>
<td>St</td>
<td>Köflach</td>
<td>IG-L</td>
<td>T</td>
<td>129</td>
<td>97</td>
<td>42</td>
</tr>
<tr>
<td>St</td>
<td>Leoben Donawitz</td>
<td>IG-L</td>
<td>T</td>
<td>86</td>
<td>42</td>
<td>32</td>
</tr>
<tr>
<td>St</td>
<td>Niklasdorf</td>
<td>IG-L</td>
<td>ß</td>
<td>115</td>
<td>49</td>
<td>33</td>
</tr>
<tr>
<td>St</td>
<td>Peggau</td>
<td>IG-L</td>
<td>T</td>
<td>154</td>
<td>63</td>
<td>37</td>
</tr>
<tr>
<td>T</td>
<td>Brixlegg</td>
<td>IG-L</td>
<td>ß</td>
<td>142</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>T</td>
<td>Hall i.T.</td>
<td>IG-L</td>
<td>ß</td>
<td>103</td>
<td>55</td>
<td>31</td>
</tr>
<tr>
<td>T</td>
<td>Imst</td>
<td>IG-L</td>
<td>ß</td>
<td>117</td>
<td>92</td>
<td>39</td>
</tr>
<tr>
<td>T</td>
<td>Innsbruck Reichenau</td>
<td>IG-L</td>
<td>ß</td>
<td>115</td>
<td>60</td>
<td>33</td>
</tr>
<tr>
<td>T</td>
<td>Innsbruck Zentrum</td>
<td>IG-L</td>
<td>ß</td>
<td>102</td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td>T</td>
<td>Lienz</td>
<td>IG-L</td>
<td>ß</td>
<td>111</td>
<td>41</td>
<td>29</td>
</tr>
<tr>
<td>T</td>
<td>Wörgl</td>
<td>IG-L</td>
<td>ß</td>
<td>97</td>
<td>46</td>
<td>30</td>
</tr>
</tbody>
</table>
Betroffen von Grenzwertüberschreitungen waren alle größeren Städte – die einzige Stadt mit mehr als 25.000 Einwohnern, in der PM10 gemessen wird und in der keine Grenzwertverletzung auftrat, ist Villach (35 TMW über 50 µg/m³) – sowie zahlreiche Kleinstädte, aber auch ländliche Regionen in Niederösterreich, im Burgenland und in der Steiermark.

TMW über 100 µg/m³ traten verbreitet in Österreich auf, so an allen Messstellen im Nordburgenland, an den meisten Messstellen in Niederösterreich, Oberösterreich, der Steiermark und Tirols, an allen Messstellen in Linz, Graz und Wien. TMW über 150 µg/m³ traten in Eisenstadt, Linz 24er Turm, Linz Neue Welt, Linz ORF-Zentrum, Linz Römerberg, Steyregg, Graz Don Bosco, Graz Ost, Hartberg, Peggau, Kufstein, Wien Belgradplatz, Liesing, Rinnböckstraße und Stadlau registriert.

Der Jahresmittelwert von 40 µg/m³ wurde 2003 an den fünf Messstellen Graz Don Bosco, Graz Mitte, Hartberg, Köflach und Wien Rinnböckstraße überschritten, der höchste JMW wurde mit 52 µg/m³ in Graz Don Bosco gemessen. Das Grenzwertkriterium für den TMW war damit – wie schon in den vergangenen Jahren – das deutlich strengere als jenes für den JMW.

Niedrige PM10-Belastungen, die deutlich unter dem Grenzwert lagen, wurden 2003 an allen höher gelegenen Standorten – u.a. den Hintergrundmessstellen in Mittelgebirgslage – sowie in wenig besiedelten Tälern wie im Lungau, im Gailltal und im Lechtal gemessen. Auffällig ist, dass sowohl industrienahe Standorte wie Arnoldstein (sechs TMW über 50 µg/m³) als auch autobahnnahe Standorte wie Zederhaus A10 (sieben TMW über 50 µg/m³) sehr niedrige PM10-Belastungen aufweisen.

Der Zielwert gemäß IG-L – nicht mehr als sieben TMW über 50 µg/m³ - wurde 2003 lediglich an den Messstellen Arnoldstein (industrienahe), Tamsweg (Kleinstadt), Zederhaus und Heiterwang (verkehrsnah), Vorhegg, Zöbelboden, St. Koloman und Masenberg (Mittelgebirge) eingehalten, d.h. einerseits an höher gelegenen Messstellen, zum anderen an Messstellen in alpinen Tälern mit geringen PM10-Emissionsdichten. Die wenigsten Überschreitungen wurden mit zwei Tagen in Vorhegg beobachtet.
7.3 Die PM10-Belastung im Jahr 2004

Im Jahr 2004 wurden in Österreich 101 PM10-Messstellen gemäß IG-L betrieben, davon 34 mit der gravimetrischen Methode und 67 mit kontinuierlichen Messgeräten. 93 dieser Messstellen wiesen eine Verfügbarkeit über 90% auf, fünf Messstellen eine Verfügbarkeit zwischen 75 und 90% sowie 3 Messstellen unter 75%.

Darüber hinaus liegen PM10-Messdaten von 27 weiteren Messstellen vor; darunter sind 20 Messreihen kontinuierlicher Messgeräte, die am selben Standort parallel zur gravimetrischen Messmethode betrieben wurden. Davon weisen 23 Messstellen eine Verfügbarkeit über 90% auf, drei zwischen 75 und 90% sowie eine unter 75%.

Der als Tagesmittelwert definierte Grenzwert des IG-L – mehr als 35 Tagesmittelwerte über 50 µg/m³ im Kalenderjahr – wurde 2004 in folgenden Gebieten überschritten:

- Graz
- Wien
- Linz
- Innsbruck
- Klagenfurt
- St. Pölten
- Kleinstädte in der Steiermark: Köflach, Hartberg, Weiz, Voitsberg, Peggau, Niklasdorf, Bruck a.d.M.
- Wolfsberg
- Imst, Hall i.T., Lienz
- Kleinstädte in Vorarlberg: Feldkirch, Lustenau

Insgesamt traten Grenzwertüberschreitungen an 28 gemäß IG-L betriebenen Messstellen auf.

Der Jahresmittelwert von 40 µg/m³ wurde zudem an zwei Stationen in Graz überschritten.

Unter den nicht gemäß IG-L erfassten PM10-Messreihen wurden vier Grenzwertüberschreitungen registriert, dabei handelt es sich um Parallelmessungen mit kontinuierlichen Geräten an Messstellen mit gravimetrischer Messung.

Tabelle 17 gibt die Messstellen an, an denen im Jahr 2004 der Grenzwert gemäß IG-L überschritten wurde; Abbildung 17 zeigt die Anzahl der Tagesmittelwerte über 50 µg/m³.
Abbildung 17: PM10, Anzahl der Tagesmittelwerte über 50 µg/m³ 2004

![Abbildung 18: Zusammenhang zwischen dem Jahresmittelwert PM10 (Grenzwert 40 µg/m³) und der Anzahl der Tage mit Werten über 50 µg/m³, 2000 bis 2004. In der Trendlinie wurden nur Stationen mit mehr als fünf Überschreitungstagen berücksichtigt](image-url)
7.4 Entwicklung der PM10-Belastung in Österreich 2000 bis 2004

Da die PM10-Messung in Österreich erst schrittweise ab 1999 aufgenommen wurde (und die Umstellung von Schwebestaub auf PM10 noch nicht abgeschlossen ist), sind Aussagen über einen langfristigen Trend der PM10-Belastung in Österreich noch nicht möglich.

Für die Messstellen Illmitz, Steyregg und Salzburg Rudolfsplatz, von denen seit 2000 durchgehend PM10-Daten vorliegen, ist in Abbildung 19 die Anzahl der TMW über 50 µg/m³ dargestellt; in Abbildung 20 die JMW dieser drei Messstellen. Tabelle 18 gibt die Anzahl der TMW über 50 µg/m³ sowie die JMW jener Messstellen an, die ab 2001 in Betrieb stehen.

Abbildung 19: Anzahl der TMW über 50 µg/m³, 2000 bis 2004

Abbildung 20: PM10 Jahresmittelwerte in Illmitz, Steyregg, Salzburg Rudolfsplatz, 2000 bis 2004
Tabelle 18: PM10, Anzahl der TMW über 50 µg/m³ und Jahresmittelwert, 2000 bis 2003

<table>
<thead>
<tr>
<th>BL</th>
<th>Messstelle</th>
<th>TMW > 50 µg/m³</th>
<th>Jahresmittelwert (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Eisenstadt</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>B</td>
<td>Illmitz</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>B</td>
<td>Kittsee</td>
<td>18</td>
<td>53</td>
</tr>
<tr>
<td>B</td>
<td>Oberwart</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>K</td>
<td>Arnoldstein Kugi</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>Klagenfurt Völkermarkterstr.</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>K</td>
<td>Villach</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>K</td>
<td>Vorhegg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>Wolfsberg</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>O</td>
<td>Bad Ischl</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>O</td>
<td>Braunau</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>O</td>
<td>Grünbach</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>O</td>
<td>Lenzing</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>O</td>
<td>Linz 24er Turm</td>
<td>37</td>
<td>52</td>
</tr>
<tr>
<td>O</td>
<td>Linz Neue Welt</td>
<td>43</td>
<td>56</td>
</tr>
<tr>
<td>O</td>
<td>Linz ORF-Zentrum</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>O</td>
<td>Linz Römerberg</td>
<td>62</td>
<td>65</td>
</tr>
<tr>
<td>O</td>
<td>Steyrregg</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>O</td>
<td>Traun</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>O</td>
<td>Vöcklabruck</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>O</td>
<td>Wels</td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>S</td>
<td>Hallein Hagerkreuzung</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>S</td>
<td>Salzburg Lehen</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>S</td>
<td>Salzburg Mirabellplatz</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>S</td>
<td>Salzburg Rudolfsplatz²</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>S</td>
<td>St. Koloman</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>Tamsweg</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>S</td>
<td>Bruck a.d.M.</td>
<td>28</td>
<td>52</td>
</tr>
<tr>
<td>S</td>
<td>Graz Don Bosco</td>
<td>158</td>
<td>131</td>
</tr>
<tr>
<td>S</td>
<td>Graz Ost</td>
<td>51</td>
<td>72</td>
</tr>
<tr>
<td>S</td>
<td>Brixlegg</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>T</td>
<td>Gärberbach</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>T</td>
<td>Hall i.T.</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>T</td>
<td>Innsbruck Reichenau</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>T</td>
<td>Innsbruck Zentrum</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>T</td>
<td>Kufstein</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>T</td>
<td>Lienz</td>
<td>45</td>
<td>37</td>
</tr>
<tr>
<td>T</td>
<td>Vomp a.d.L.</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>T</td>
<td>Vomp A12</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>T</td>
<td>Wörgl</td>
<td>14</td>
<td>42</td>
</tr>
</tbody>
</table>

Die PM10-Belastung weist zwischen den Jahren 2001 und 2003 tendenziell einen ansteigenden Verlauf auf, wobei der Jahresmittelwert und die Zahl der TMW über

19 Beginn der Messung am 2.5.2002.

20 1999 Jahresmittelwert 33 µg/m³ (Probenahme jeden zweiten Tag)
hohe Belastung 2003

Ein deutlich anderes Verhalten als in Illmitz zeigt sich an der Messstelle Klagenfurt Völkermarkterstraße, von dieser liegen Monatsmittelwerte seit Mai 2000 vor (Abbildung 22).

Zwar war auch in Klagenfurt das Jahr 2003 vergleichsweise hoch belastet, allerdings war im Jahr 2004 im Unterschied zu Illmitz die Belastung auf einem ähnlich hohen Niveau. Ebenso waren die Monate Februar und März 2003 nur geringfügig höher belastet als die durchschnittliche Belastung, während in Illmitz (und an zahlreichen anderen Stationen) die Belastung in diesen Monaten deutlich höher als in den Jahren zuvor war.
8 DIE PM10-BELASTUNG IM LAVANTTAL

8.1 Die Immissionssituation in Wolfsberg im Vergleich zu Klagenfurt und Villach

Im Zeitraum von Mai bis Dezember 2002 wurden in Wolfsberg 18 TMW über 50 µg/m³ registriert, im Jahr 2003 70 TMW, im Jahr 2004 67 TMW (Tabelle 19).

Wolfsberg wies damit eine vergleichbare PM10-Belastung wie Klagenfurt Völkermarkterstraße auf (siehe Tabelle 19), wo von Mai bis Dez. 2002 16 TMW über 50 µg/m³ auftraten und im Jahr 2003 75 TMW, im Jahr 2004 80 TMW, aber eine wesentlich höhere Belastung als Villach (7, 35 und 25 TMW über 50 µg/m³).

Tabelle 19: Vergleich der PM10-Belastung in Wolfsberg, Klagenfurt Völkermarkterstraße und Villach, Mai 2002 bis Dezember 2004

<table>
<thead>
<tr>
<th></th>
<th>Wolfsberg</th>
<th>Klagenfurt Völkermarkterstr.</th>
<th>Villach</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.02-12.02</td>
<td>30</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>05.02-12.03</td>
<td>30</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>05.02-12.04</td>
<td>30</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>05.02-12.05</td>
<td>26</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Mittelwert (µg/m³)</td>
<td>30</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>TMW > 50 µg/m³</td>
<td>18</td>
<td>70</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>35</td>
<td>25</td>
</tr>
</tbody>
</table>

21 Hintergrundmessstelle des Umweltbundesamtes, ca. 1,5 km westlich von Kötschach-Mauthen in 1020 m Höhe
8.2 Die Immissionssituation in Wolfsberg im Vergleich zu St. Andrä und Magersdorf

Der Vergleich der PM10-Belastung in Wolfsberg, St. Andrä und Magersdorf im Zeitraum von 13.8.2003 bis Ende August 2004 ist in Tabelle 20 und Abbildung 25 angeführt. Wolfsberg wies im Mittel eine um 23% bzw. 32% höhere PM10-Belastung auf als St. Andrä bzw. Magersdorf; die Anzahl der Tagesmittelwerte über 50 µg/m³ war aber beinahe doppelt so hoch.

Die mittlere Differenz der PM10-TMW von Wolfsberg gegenüber St. Andrä betrug 6 µg/m³, gegenüber Magersdorf 9 µg/m³. Die Differenz zwischen Wolfsberg und Magersdorf ist im Mittel an Tagen, an denen in Wolfsberg der TMW über 50 µg/m³, mit 13 µg/m³ (20% der mittleren PM10-Belastung in Wolfsberg) höher als im Mittel über alle Tage.

Tabelle 20: Vergleich der PM10-Belastung in Wolfsberg, St. Andrä und Magersdorf, August 2003 bis August 2004

<table>
<thead>
<tr>
<th></th>
<th>Wolfsberg</th>
<th>St. Andrä</th>
<th>Magersdorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert (µg/m³)</td>
<td>34</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>TMW > 50 µg/m³</td>
<td>61</td>
<td>36</td>
<td>33</td>
</tr>
</tbody>
</table>

Von Interesse ist die Frage, ob in St. Andrä oder Magersdorf der Grenzwert gemäß IG-L – mehr als 35 TMW über 50 µg/m³ im Kalenderjahr – überschritten worden wäre.

Die Messungen in St. Andrä und Magersdorf decken etwas mehr als zwölf Monate ab, in diesem Zeitraum lag die PM10-Belastung in St. Andrä mit 36 TMW über 50 µg/m³ knapp über dem Grenzwert, in Magersdorf mit 33 TMW knapp darunter.

Im Jahr 2003 wurden in Wolfsberg 70 TMW über 50 µg/m³ registriert. Extrapoliert man die Messwerte von St. Andrä und Magersdorf anhand des o. g. Vergleichs mit Wolfsberg höher belastet

Grenzwerte auch in St. Andrä und Magersdorf überschritten
Wolfsberg auf das (höher belastete) Kalenderjahr 2003, so würden sich für St. Andrä 41 TMW über 50 µg/m³, für Magersdorf 38 TMW über 50 µg/m³ ergeben, was jedenfalls eine Grenzwertverletzung ergeben hätte.

Abbildung 25: Verlauf der PM10-Tagesmittelwerte in Wolfsberg, St. Andrä und Magersdorf, August 2003-August 2004

8.3 Die Immissionssituation in Wolfsberg im Vergleich zu Gurtschitschach und Lavamünd

Im Rahmen des Projektes AQUELLA der TU-Wien wurde am 15.10.2004 mit der PM10-Messung in Gurtschitschach und in Lavamünd begonnen. Die Station Gurtschitschach liegt ca. 4 km südöstlich von Völkermarkt, die Messstelle Lavamünd ca. 5 km südöstlich der gleichnamigen Ortschaft und etwa 25 km von Wolfsberg entfernt.

<table>
<thead>
<tr>
<th></th>
<th>Wolfsberg</th>
<th>Gurtschitschach</th>
<th>Lavamünd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>46</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>TMW>50</td>
<td>42</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>max. TMW</td>
<td>117</td>
<td>53</td>
<td>57</td>
</tr>
</tbody>
</table>

Die mittlere Differenz der PM10-Konzentration zwischen Wolfsberg und Gurtschitschach bzw. Lavamünd beträgt über den Zeitraum 15.10.2004 – 20.1.2005 jeweils 22 µg/m³, an Tagen, an denen in Wolfsberg der TMW über 50 µg/m³ lag, jeweils 31 µg/m³.

8.4 Die Beziehung zwischen PM10- und Schwebestaubkonzentration

In Kärnten liegen ausschließlich gravimetrische PM10-Daten als Tagesmittelwerte vor, parallel dazu wird Schwebestaub (TSP\(^{22}\)) mit kontinuierlichen Messgeräten erfasst, d. h. es liegen keine kontinuierlichen PM10-Werte vor. Die Auswertungen stützen sich daher sowohl auf die gravimetrischen PM10-Daten als auch auf die zeitlich besser aufgelösten Schwebestaub-Daten.

Vergleich TSP-PM10

Vorangestellt wird diesen Auswertungen ein Vergleich der beiden Messgrößen, um die Auswertungen der TSP-Daten in das Belastungsbild von PM10 besser einordnen zu können.

Das mittlere Verhältnis zwischen Staub und PM10 betrug in Wolfsberg im Jahr 2002 (Mai – Dez.) 1,01, im Jahr 2003 1,06, im Jahr 2004 1,01 (Tabelle 22), in Klagenfurt Völkermarkterstraße 1,20, 1,10 bzw. 1,02. In St. Andrä (Mittelwert August 2003 bis August 2004 in Tabelle 22) ist das TSP-PM10-Verhältnis sehr ähnlich jenem in Wolfsberg.

Damit ist die mit kontinuierlichen Messgeräten erfasste Gesamtschwebestaub-Konzentration numerisch etwas höher als die mit der gravimetrischen Methode gemessene PM10-Konzentration.

Tabelle 22: Mittleres Verhältnis der Schwebestaub- und PM10-Konzentration

<table>
<thead>
<tr>
<th></th>
<th>Wolfsberg</th>
<th>St. Andrä</th>
<th>Klagenfurt Völkermarkterstr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>1,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1,06</td>
<td>1,07</td>
<td>1,10</td>
</tr>
<tr>
<td>2004</td>
<td>1,01</td>
<td>1,14</td>
<td>1,02</td>
</tr>
<tr>
<td>August 2003 – August 2004</td>
<td>1,04</td>
<td>1,11</td>
<td>1,02</td>
</tr>
</tbody>
</table>

Jahreszeitliche Unterschiede

Wie Abbildung 27 zeigt, ist das TSP-PM10-Verhältnis im Sommer höher als im Winter. Bis zum Sommer 2003 wies Klagenfurt Völkermarkterstraße ein etwas höheres TSP-PM10-Verhältnis auf als Wolfsberg, danach ein etwas niedrigeres.

\(^{22}\) Total Suspended Particulates (Gesamtschwebestaub)

Abbildung 27: gleitender 30-Tagesmittelwert des Verhältnisses der Schwebestaub- und PM10-Konzentration

Abbildung 28: Monatsmittelwerte des Verhältnisses von TSP zu PM10 an den Messstellen Wolfsberg, St. Andrä und Klagenfurt Völkermarkterstraße, 2002-2004
8.5 Trend der TSP-Konzentration 1991-2004

<table>
<thead>
<tr>
<th>Wolfsberg Hauptschule</th>
<th>St. Andrä</th>
<th>St. Georgen</th>
<th>Klagenfurt Koschatstraße</th>
<th>Klagenfurt Völkermarkter Straße</th>
<th>St. Veit</th>
<th>Villach Tirolerbrücke</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td>PM10</td>
<td>TSP</td>
<td>PM10</td>
<td>TSP</td>
<td>PM10</td>
<td>TSP</td>
</tr>
<tr>
<td>1991</td>
<td>76</td>
<td>59</td>
<td>37</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>1992</td>
<td>79</td>
<td>50</td>
<td>32</td>
<td>50</td>
<td>83</td>
<td>74</td>
</tr>
<tr>
<td>1993</td>
<td>66</td>
<td>48</td>
<td>27</td>
<td>46</td>
<td>62</td>
<td>68</td>
</tr>
<tr>
<td>1994</td>
<td>66</td>
<td>46</td>
<td>29</td>
<td>47</td>
<td>74</td>
<td>64</td>
</tr>
<tr>
<td>1995</td>
<td>50</td>
<td>48</td>
<td>27</td>
<td>41</td>
<td>73</td>
<td>56</td>
</tr>
<tr>
<td>1996</td>
<td>53</td>
<td>46</td>
<td>30</td>
<td>43</td>
<td>76</td>
<td>62</td>
</tr>
<tr>
<td>1997</td>
<td>45</td>
<td>40</td>
<td>23</td>
<td>40</td>
<td>65</td>
<td>52</td>
</tr>
<tr>
<td>1998</td>
<td>48</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>1999</td>
<td>51</td>
<td>37</td>
<td>29</td>
<td>39</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>2000</td>
<td>52</td>
<td>40</td>
<td>21</td>
<td>34</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>2001</td>
<td>43</td>
<td>34</td>
<td>16</td>
<td>29</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>2002</td>
<td>35</td>
<td>36</td>
<td>20</td>
<td>30</td>
<td>42</td>
<td>37</td>
</tr>
<tr>
<td>2003</td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>20</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>2004</td>
<td>35</td>
<td>35</td>
<td>30</td>
<td>17</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

Die höchste TSP-Belastung (und auch PM10-Belastung) trat in den meisten Jahren an der Station Klagenfurt Völkermarkerstraße auf. Vergleichsweise hohe Belastungen zeigen sich aber auch in Wolfsberg, St. Veit und in Villach. An der höher gelegenen Messstelle St. Georgen ist die TSP-Belastung dagegen meist nur halb so hoch wie in St. Andrä oder in Wolfsberg.

An allen drei Messstellen zeigt sich ein deutlich abnehmender Trend, der in Wolfsberg und St. Andrä ein Signifikanzniveau von 99,9% aufweist, in St. Georgen von 99% (Mann-Kendall-Test [FMI, 2002]). Betrug in Wolfsberg die TSP-Belastung am Beginn der 90er Jahre noch um 80 µg/m³, so lag sie im Jahr 2004 bei etwa 35 µg/m³. In diesem Zeitraum nahm die TSP-Belastung in Wolfsberg im Schnitt jährlich um etwa 3 µg/m³ ab, in St. Andrä um etwa 1,7 µg/m³ und in St. Georgen um etwa 1,3 µg/m³.

Ob sich dieser Trend auch in Zukunft in gleichem Ausmaß fortsetzen wird, kann naturgemäß nicht beurteilt werden.
8.6 Die Abhängigkeit der Schadstoffbelastung von der Windrichtung

8.6.1 Kontinuierliche Schwebestaub-Daten

Windrosen stellen Häufigkeitsverteilungen der Windrichtung dar, dargestellt in einem Kreisdiagramm. Im vorliegenden Bericht werden Windrichtungshäufigkeiten für Sektoren von 10° angegeben, wobei Fälle mit Windgeschwindigkeiten unter 0,5 m/s gesondert als Kalmen (Windstille) ausgewiesen werden. Wind aus 90° entspricht Ost, 180° Süd, 270° West und 360° Nord. Schadstoffwindrosen geben für jeden Windrichtungssektor die mittlere Schadstoffkonzentration an. Den Mittelungszeitraum stellt dabei die Gesamtheit jener Fälle dar, in denen der Wind aus dem betreffenden Sektor wehte.

Die Schadstoffwindrosen für TSP des Jahres 2003 an den Messstellen Wolfsberg, St. Andrä und St. Georgen sind in Abbildung 30 dargestellt und zeigen – für jene Zeiträume, in denen die Windgeschwindigkeit über 0,5 m/s betrug – in Wolfsberg keine ausgeprägte Abhängigkeit der Konzentration von der Windrichtung (um 35 µg/m³). In St. Andrä ist dagegen (sehr seltener) Wind aus östlicher Richtung – von der Bundesstraße, an deren Westseite die Messstelle liegt, oder aus Richtung des Kraftwerkes St. Andrä – mit höheren PM10-Konzentrationen verbunden, Wind aus Nordnordwest (vermutlich Hangabwind) mit niedrigen Konzentrationen, die Hauptwindrichtung Süd mit ca. 35 µg/m³. St. Georgen weist aufgrund seiner Höhenlage eine niedrigere TSP-Belastung auf, diese ist bei Nordwestwind mit ca. 22 µg/m³ etwas höher als bei Südostwind mit ca. 18 µg/m³.

Die Windrosen zeigen, dass bei den Hauptwindrichtungen parallel zum Lavanttal an allen drei Messstellen im Mittel sehr einheitliche TSP-Konzentrationen auftreten, die sich kaum von jenen bei Kalme unterscheiden. Die mittlere TSP-Konzentration bei Kalme (Windgeschwindigkeit unter 0,5 m/s) liegt in Wolfsberg bei 41 µg/m³, in St. Andrä bei 37 µg/m³ und in St. Georgen bei 22 µg/m³. Windstille weist somit kaum andere TSP-Konzentrationen auf wie bei Wind aus den Hauptwindrichtungen, sodass die Windrosen keine Herkunftszuordnung der gemessenen TSP-Belastung erlauben.
8.6.2 Gasförmige Schadstoffe

Die Schadstoffwindrosen für SO$_2$ (Abbildung 31) zeigen an allen Messstellen erhöhte Konzentrationen bei Südostwind (um 5 µg/m³), die höher ist als bei Windstille (St. Georgen 2 µg/m³, Wolfsberg 4 µg/m³). Als sehr wahrscheinlichste Ursache der erhöhten SO$_2$-Belastung bei Südostwind lässt sich Transport aus Slowenien (Kraftwerke Šoštanj und Trbovlje) angeben. Die Windrosen zeigen deutlich, dass SO$_2$-Quellen im Lavanttal (in Frage kommen Frantschach und das KW St. Andrä) keine relevanten Beiträge zur SO$_2$-Belastung liefern.

Auch die Messstelle Frantschach selbst zeigt – wenn auch nur leicht – erhöhte SO$_2$-Konzentrationen um 8 µg/m³ bei Südwind (Kalme 6 µg/m³), nicht aus dem Bereich des Werkes.
Abbildung 31: SO$_2$-Schadstoffwindrosen an den Messstellen Wolfsberg, St. Andrä, St. Georgen im Lavanttal und Frantschach, 2003. Der Radius der Windrosen entspricht einer Windrichtungshäufigkeit von 20% (-----) bzw. einem HMW von 10 µg/m³ (---).

keine Quellzuordnung möglich bei NO und NO$_2$

Die NO-Belastung (Abbildung 32) wird aufgrund von dessen geringer atmosphärischer Lebensdauer von nahe gelegenen Quellen dominiert. In Wolfsberg treten die höchsten NO-Konzentrationen bei Südostwind auf (um 30 µg/m³), wohingegen NO$_2$ praktisch keine Windrichtungsabhängigkeit aufweist (um 30 µg/m³). Bei Kalme ist die NO-Belastung mit 48 µg/m³ deutlich höher als bei Südostwind, die NO$_2$-Belastung mit 32 µg/m³ ähnlich hoch wie bei Südost- und Nordwestwind. Damit erlauben die Schadstoffwindrosen in Wolfsberg keinerlei Quellzuordnung der NO- und NO$_2$-Belastung.
In St. Andrä treten bei Ostwind deutlich höhere NO\textsubscript{2}-(ca. 35 µg/m³) und NO-Konzentrationen (ca. 25 µg/m³) auf als bei Südsüdostwind (25 bzw. 15 µg/m³), noch niedriger sind die NOx-Konzentrationen bei Westwind. Allerdings sind Kalmen mit mittleren NO-Konzentrationen von 35 µg/m³ und NO\textsubscript{2}-Konzentrationen von 37 µg/m³ verbunden, sodass die Windrichtungsabhängigkeit kaum ausagekräftig ist.

Dagegen zeigt St. Georgen die deutlich höchsten NO- und NO\textsubscript{2} -Konzentrationen bei Wind aus Nordwest (NO 6 µg/m³, entspricht Kalme; NO\textsubscript{2} 17 µg/m³, Kalme 14 µg/m³), d. h. aus dem zentralen Lavanttal, die auch höher sind als bei Kalme. Daraus ist zu schließen, dass das zentrale Lavanttal die bedeutendste NO\textsubscript{2}-Quelle darstellt. NOx-Transport aus Slowenien ist nicht festzustellen.

8.6.3 PM10 (Tagesmittelwerte)

Angegeben sind jeweils die mittleren PM10-Konzentrationen bei Wind aus dem Nordsektor (270° bis 90°) und aus dem Südsektor für Windgeschwindigkeiten ab 0,5 m/s; Tage mit mittleren Windgeschwindigkeiten unter 0,5 m/s sind gesondert als Kalme ausgewiesen. Zusätzlich ist in Tabelle 24 der mittlere Temperaturgradient zwischen St. Andrä und St. Georgen als Hinweis auf die Ausbreitungsbedingungen angegeben.

Im Gesamtzeitraum sowie im Winter treten die höchsten PM10-Konzentrationen an allen drei Messstellen im Lavanttal bei Kalme auf; diese sind in Wolfsberg um ca. 60% höher als bei Nordwind. Im Sommer treten die höchsten PM10-Konzentrationen bei Südwind auf, wobei die Unterschiede vergleichsweise gering
sind. Die niedrigsten PM10-Konzentrationen treten in allen ausgewerteten Zeiträumen bei Nordwind auf.

Die ungünstigsten Ausbreitungsbedingungen, bewertet anhand des Temperaturprofils zwischen St. Andrä und St. Georgen, treten bei Südwind auf (im Winter sehr stabile Schichtung mit einem mittleren Temperaturgradienten von −0,7°C), allerdings dürfte die niedrigere Windgeschwindigkeit der Klasse unter 0,5 m/s ein entscheidender Faktor für Schadstoffanreicherung in Bodennähe sein.

Tabelle 24: Abhängigkeit der gravimetrischen PM10-Konzentration (µg/m³) von Windgeschwindigkeit und Windrichtung in Wolfsberg, Dez. 2002 – April 2004

<table>
<thead>
<tr>
<th></th>
<th>PM10 Wolfsberg</th>
<th>PM10 St. Andrä</th>
<th>PM10 Magersdorf</th>
<th>Temperaturdifferenz St. Andrä – St. Georgen (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dez. 02 – April 04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>31</td>
<td>26</td>
<td>22</td>
<td>0,3</td>
</tr>
<tr>
<td>S</td>
<td>35</td>
<td>30</td>
<td>27</td>
<td>0,0</td>
</tr>
<tr>
<td>Kalme</td>
<td>51</td>
<td>38</td>
<td>36</td>
<td>-0,1</td>
</tr>
<tr>
<td>Sommer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>28</td>
<td>22</td>
<td>20</td>
<td>0,6</td>
</tr>
<tr>
<td>S</td>
<td>32</td>
<td>27</td>
<td>25</td>
<td>0,3</td>
</tr>
<tr>
<td>Kalme</td>
<td>29</td>
<td>24</td>
<td>20</td>
<td>0,6</td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>28</td>
<td>24</td>
<td>-0,1</td>
</tr>
<tr>
<td>S</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>-0,7</td>
</tr>
<tr>
<td>Kalme</td>
<td>54</td>
<td>41</td>
<td>39</td>
<td>-0,2</td>
</tr>
</tbody>
</table>

8.7 Die Abhängigkeit der PM10- und Schwebestaubbelastung von der Windgeschwindigkeit

Aus der Abhängigkeit der Schadstoffkonzentration von der Windgeschwindigkeit lassen sich i. A. folgende Schlüsse ziehen:

Einfluss verschiedener Quellen

- Tritt die höchste Konzentration im Mittel bei Kalme (Windgeschwindigkeit unter 0,5 m/s) auf und nimmt die Konzentration mit zunehmender Windgeschwindigkeit rasch ab, so ist dies ein starker Hinweis auf einen dominierenden Einfluss nahe gelegener, niedriger Quellen
- Nimmt die Konzentration mit der Windgeschwindigkeit zu, so ist dies in der Regel ein Hinweis auf (Fern-)Transport von Quellen, deren Emissionen die Messstelle bei niedriger Windgeschwindigkeit nicht erreichen

8.7.1 Kontinuierliche Staub-Messdaten

Die Staub-Konzentration nimmt im Winter (Tabelle 25, Abbildung 33) an den Messstellen im Lavanttal nur geringfügig mit zunehmender Windgeschwindigkeit ab.
In Wolfsberg liegt die TSP-Konzentration bei Geschwindigkeiten bis 1 m/s im Mittel etwas über 40 µg/m³, bei höheren Windgeschwindigkeiten zwischen 30 und 35 µg/m³. Dies ist ein Hinweis, dass die TSP-Belastung im Mittel nur geringfügig von lokalen Emissionen bestimmt wird, sondern von Quellen im gesamten Lavanttal.

Im Sommer (Tabelle 26) weist die TSP-Konzentration praktisch keine Abhängigkeit von der Windgeschwindigkeit auf.

8.7.2 Gasförmige Schadstoffe

Im Winterhalbjahr überwiegt die Klasse unter 0,5 m/s (Kalme) mit 64% deutlich, im Sommer machen Kalmen immer noch 38% der Halbstundenmittelwerte aus.

Im Winter (Tabelle 25) nimmt die NO-Konzentration an allen Messstellen mit zunehmender Windgeschwindigkeit rasch ab, die höchsten NO-Konzentrationen treten bei Kalme auf. Dies entspricht dem Verhalten eines Schadstoffes, der (aufgrund seiner geringen atmosphärischen Lebensdauer) überwiegend aus nahe gelegenen Quellen stammt.

Die NO$_2$-Konzentration zeigt dagegen bei Windgeschwindigkeiten bis 2 m/s keine Abhängigkeit von der Windgeschwindigkeit, bei höheren Windgeschwindigkeiten nimmt sie ab. Dies ist ein Hinweis, dass die NO$_2$-Belastung von Quellen in einem weiteren Umkreis bestimmt wird.
Bei SO\textsubscript{2} weisen alle Messstellen im Lavanttal sowie südlich davon, ausgenommen Frantschach, eine gleichartige Abhängigkeit von der Windgeschwindigkeit auf; die Konzentration zeigt bei Windgeschwindigkeiten bis 2 m/s keine Abhängigkeit von der Windgeschwindigkeit, bei höheren Windgeschwindigkeiten nimmt sie ab. In Frantschach ist dagegen eine leichte kontinuierliche Abnahme der SO\textsubscript{2}-Belastung mit zunehmender Windgeschwindigkeit zu beobachten.

Die Ozonkonzentration (nicht in Tabelle 25 dargestellt) nimmt an allen Messstellen mit zunehmender Windgeschwindigkeit stark zu. Die Ozonkonzentration wird im Winter in Bodennähe ausschließlich durch das Zusammenspiel von Ozonabbau am Boden und Einmischen („Nachliefern“) ozonreicher Luft aus höheren Schichten bestimmt, sodass austauscharme Wetterlagen mit niedriger Ozonbelastung verbunden sind (in Wolfsberg 10 µg/m3 bei Kalme), Situationen mit starkem vertikalen Austausch, d. h. hoher Windgeschwindigkeit, mit hohen Ozonkonzentrationen (in Wolfsberg 70 µg/m3 bei 4 m/s).

Tabelle 25: Abhängigkeit der Schadstoffkonzentration (µg/m3) von der Windgeschwindigkeit in Wolfsberg, Winter 2002/03

<table>
<thead>
<tr>
<th>Windgeschwindigkeit (Klassenobergrenze) m/s</th>
<th>0,5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit</td>
<td>63,6%</td>
<td>21,0%</td>
<td>11,5%</td>
<td>3,4%</td>
<td>0,5%</td>
</tr>
<tr>
<td>Wolfsberg TSP</td>
<td>43,8</td>
<td>41,2</td>
<td>32,2</td>
<td>34,1</td>
<td>31,1</td>
</tr>
<tr>
<td>St. Andrä TSP</td>
<td>42,4</td>
<td>43,4</td>
<td>33,7</td>
<td>39,2</td>
<td>40,5</td>
</tr>
<tr>
<td>St. Georgen TSP</td>
<td>22,7</td>
<td>21,6</td>
<td>18,2</td>
<td>17,2</td>
<td>20,5</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. TSP</td>
<td>33,4</td>
<td>36</td>
<td>34,4</td>
<td>29,1</td>
<td>33,9</td>
</tr>
<tr>
<td>Klagenfurt Völkermarkterstr. TSP</td>
<td>46,3</td>
<td>55,2</td>
<td>51,9</td>
<td>44,9</td>
<td>41,6</td>
</tr>
<tr>
<td>Vorhegg PM10</td>
<td>6,7</td>
<td>8,6</td>
<td>9,3</td>
<td>10,9</td>
<td>10,8</td>
</tr>
<tr>
<td>Wolfsberg NO</td>
<td>59,1</td>
<td>35,2</td>
<td>17,5</td>
<td>15,7</td>
<td>12,4</td>
</tr>
<tr>
<td>St. Andrä NO</td>
<td>46,6</td>
<td>31,4</td>
<td>19,6</td>
<td>14,7</td>
<td>10</td>
</tr>
<tr>
<td>St. Georgen NO</td>
<td>8,4</td>
<td>5,9</td>
<td>3,3</td>
<td>2,4</td>
<td>1,8</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. NO</td>
<td>33,2</td>
<td>25,9</td>
<td>21,5</td>
<td>10,7</td>
<td>3,2</td>
</tr>
<tr>
<td>Klagenfurt Völkermarkterstr. NO</td>
<td>72,4</td>
<td>64,6</td>
<td>54,4</td>
<td>36,3</td>
<td>13,3</td>
</tr>
<tr>
<td>Vorhegg NO</td>
<td>0,6</td>
<td>0,8</td>
<td>0,6</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>Wolfsberg NO\textsubscript{2}</td>
<td>34</td>
<td>33,4</td>
<td>29,5</td>
<td>19,8</td>
<td>14,1</td>
</tr>
<tr>
<td>St. Andrä NO\textsubscript{2}</td>
<td>38,7</td>
<td>39,2</td>
<td>38,7</td>
<td>26,5</td>
<td>21</td>
</tr>
<tr>
<td>St. Georgen NO\textsubscript{2}</td>
<td>16,5</td>
<td>12,3</td>
<td>9,6</td>
<td>3,7</td>
<td>1,4</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. NO\textsubscript{2}</td>
<td>46,1</td>
<td>47,9</td>
<td>50,3</td>
<td>31,2</td>
<td>13,5</td>
</tr>
<tr>
<td>Klagenfurt Völkermarkterstr. NO\textsubscript{2}</td>
<td>47,6</td>
<td>53,8</td>
<td>55,5</td>
<td>41,4</td>
<td>25,7</td>
</tr>
<tr>
<td>Vorhegg NO\textsubscript{2}</td>
<td>4,7</td>
<td>5,2</td>
<td>5,3</td>
<td>4,3</td>
<td>3,4</td>
</tr>
<tr>
<td>Wolfsberg SO\textsubscript{2}</td>
<td>6</td>
<td>6,7</td>
<td>5,9</td>
<td>2,9</td>
<td>1,3</td>
</tr>
<tr>
<td>St. Andrä SO\textsubscript{2}</td>
<td>2,9</td>
<td>3,5</td>
<td>3,2</td>
<td>1,8</td>
<td>0,5</td>
</tr>
<tr>
<td>St. Georgen SO\textsubscript{2}</td>
<td>3,3</td>
<td>4,1</td>
<td>3,9</td>
<td>1,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Bleiburg SO\textsubscript{2}</td>
<td>4,7</td>
<td>5,4</td>
<td>5,2</td>
<td>2,9</td>
<td>2</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. SO\textsubscript{2}</td>
<td>14</td>
<td>14,5</td>
<td>12,2</td>
<td>8,5</td>
<td>3,8</td>
</tr>
<tr>
<td>Soboth SO\textsubscript{2}</td>
<td>2,7</td>
<td>4,0</td>
<td>4,3</td>
<td>3,1</td>
<td>1,9</td>
</tr>
<tr>
<td>Frantschach St. Gertraud SO\textsubscript{2}</td>
<td>9,2</td>
<td>8,3</td>
<td>7,1</td>
<td>6,5</td>
<td>6</td>
</tr>
<tr>
<td>Vorhegg SO\textsubscript{2}</td>
<td>1,0</td>
<td>1,4</td>
<td>1,9</td>
<td>1,3</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Im Sommer (Tabelle 26) nimmt die NO-Konzentration ebenfalls mit zunehmender Windgeschwindigkeit ab, allerdings deutlich schwächer (und auf niedrigerem...
Konzentrationsniveau) als im Winter. Auch die NO\(_2\)-Konzentration zeigt ein analoges Verhalten wie im Winter.

Die SO\(_2\)-Messstellen weisen im Lavanttal im Sommer eine vergleichbare Windgeschwindigkeitsabhängigkeit auf wie im Winter, es fällt allerdings auf, dass im Sommer die SO\(_2\)-Konzentration in Frantschach – auch verglichen mit den anderen Messstellen im Lavanttal – wesentlich niedriger ist als im Winter, wohingegen sie auf der Soboth höher ist.

Die Abhängigkeit der Ozonkonzentration von der Windgeschwindigkeit ist im Sommer wesentlich schwächer ausgeprägt als im Winter. Die höchsten Ozonkonzentrationen treten bei Windgeschwindigkeiten zwischen 2 und 3 m/s auf.

\[\text{Abhängigkeit der Schadstoffkonzentration (µg/m³) von der Windgeschwindigkeit in Wolfsberg, Sommer 2003}\]

<table>
<thead>
<tr>
<th>Windgeschwindigkeit (Klassenobergrenze) m/s</th>
<th>0,5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit</td>
<td>38%</td>
<td>40%</td>
<td>19%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Wolfsberg TSP</td>
<td>32,9</td>
<td>32,9</td>
<td>32,5</td>
<td>31,0</td>
<td>36,3</td>
</tr>
<tr>
<td>St. Andrä TSP</td>
<td>33,0</td>
<td>32,5</td>
<td>32,3</td>
<td>39,2</td>
<td>41,4</td>
</tr>
<tr>
<td>St. Georgen TSP</td>
<td>19,5</td>
<td>20,2</td>
<td>21,0</td>
<td>20,6</td>
<td>18,5</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. TSP</td>
<td>22,6</td>
<td>26,3</td>
<td>28,7</td>
<td>27,5</td>
<td>25,0</td>
</tr>
<tr>
<td>Klagenfurt Völkermarkterstr. TSP</td>
<td>30,5</td>
<td>33,6</td>
<td>33,8</td>
<td>35,7</td>
<td>37,1</td>
</tr>
<tr>
<td>Vorhegg PM10</td>
<td>9,8</td>
<td>11,2</td>
<td>11,5</td>
<td>9,9</td>
<td>5,1</td>
</tr>
<tr>
<td>Wolfsberg NO</td>
<td>19,6</td>
<td>13,0</td>
<td>9,9</td>
<td>9,9</td>
<td>7,6</td>
</tr>
<tr>
<td>St. Andrä NO</td>
<td>22,0</td>
<td>15,2</td>
<td>9,4</td>
<td>8,1</td>
<td>8,7</td>
</tr>
<tr>
<td>St. Georgen NO</td>
<td>1,4</td>
<td>1,2</td>
<td>1,0</td>
<td>0,8</td>
<td>1,1</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. NO</td>
<td>5,1</td>
<td>4,0</td>
<td>2,5</td>
<td>1,4</td>
<td>1,5</td>
</tr>
<tr>
<td>Klagenfurt Völkermarkterstr. NO</td>
<td>24,9</td>
<td>19,8</td>
<td>16,3</td>
<td>15,3</td>
<td>17,9</td>
</tr>
<tr>
<td>Vorhegg NO</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Wolfsberg NO(_2)</td>
<td>26,2</td>
<td>26,6</td>
<td>26,7</td>
<td>20,8</td>
<td>13,6</td>
</tr>
<tr>
<td>St. Andrä NO(_2)</td>
<td>28,1</td>
<td>31,5</td>
<td>28,8</td>
<td>21,6</td>
<td>16,6</td>
</tr>
<tr>
<td>St. Georgen NO(_2)</td>
<td>6,9</td>
<td>6,5</td>
<td>5,7</td>
<td>3,3</td>
<td>1,7</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. NO(_2)</td>
<td>25,3</td>
<td>26,1</td>
<td>26,6</td>
<td>17,9</td>
<td>15,7</td>
</tr>
<tr>
<td>Klagenfurt Völkermarkterstr. NO(_2)</td>
<td>35,9</td>
<td>38,8</td>
<td>39,1</td>
<td>33,5</td>
<td>32,4</td>
</tr>
<tr>
<td>Vorhegg NO(_2)</td>
<td>3,2</td>
<td>3,4</td>
<td>3,5</td>
<td>3,7</td>
<td>2,5</td>
</tr>
<tr>
<td>Wolfsberg SO(_2)</td>
<td>2,3</td>
<td>3,0</td>
<td>2,8</td>
<td>1,6</td>
<td>0,9</td>
</tr>
<tr>
<td>St. Andrä SO(_2)</td>
<td>2,9</td>
<td>3,8</td>
<td>3,4</td>
<td>2,2</td>
<td>1,1</td>
</tr>
<tr>
<td>St. Georgen SO(_2)</td>
<td>2,4</td>
<td>3,5</td>
<td>2,9</td>
<td>1,5</td>
<td>2,1</td>
</tr>
<tr>
<td>Bleiburg SO(_2)</td>
<td>4,5</td>
<td>6,0</td>
<td>4,9</td>
<td>2,9</td>
<td>1,8</td>
</tr>
<tr>
<td>Klagenfurt Koschatstr. SO(_2)</td>
<td>4,7</td>
<td>5,4</td>
<td>4,9</td>
<td>4,1</td>
<td>3,4</td>
</tr>
<tr>
<td>Soboth SO(_2)</td>
<td>6,8</td>
<td>7,2</td>
<td>7,5</td>
<td>6,6</td>
<td>6,4</td>
</tr>
<tr>
<td>Frantschach St. Gertraud SO(_2)</td>
<td>5,1</td>
<td>5,0</td>
<td>4,3</td>
<td>3,3</td>
<td>2,9</td>
</tr>
<tr>
<td>Vorhegg SO(_2)</td>
<td>0,3</td>
<td>0,4</td>
<td>0,4</td>
<td>0,3</td>
<td>0,3</td>
</tr>
</tbody>
</table>

8.7.3 PM10 (Tagesmittelwerte)

Die Abhängigkeit der gravimetrischen PM10-Konzentrationen in Wolfsberg, St. Andrä und Magersdorf von der in Wolfsberg gemessenen Windgeschwindigkeit ist

Abbildung 34: Abhängigkeit der gravimetrischen PM10-Konzentration von Windgeschwindigkeit in Wolfsberg, Dez. 2002 – April 2004

Die PM10-Konzentration nimmt an allen drei Messstellen mit zunehmender Windgeschwindigkeit stark ab. Sie ist in Wolfsberg bei Windgeschwindigkeiten unter 0,5 m/s doppelt so hoch wie bei Geschwindigkeiten über 1 m/s.

Die Temperaturdifferenz zwischen St. Andrä und St. Georgen variiert nicht sehr stark mit der Windgeschwindigkeit, zeigt aber bei niedrigen Windgeschwindigkeiten stabile Schichtung als bei höheren.

Tabelle 27: Abhängigkeit der gravimetrischen PM10-Konzentration (µg/m³) von Windgeschwindigkeit in Wolfsberg, Dez. 2002 – April 2004

<table>
<thead>
<tr>
<th>Windgeschwindigkeit [m/s]</th>
<th>PM10 Wolfsberg</th>
<th>PM10 St. Andrä</th>
<th>PM10 Magersdorf</th>
<th>Temperaturdifferenz St. Andrä – St. Georgen (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1 m/s</td>
<td>26</td>
<td>21</td>
<td>18</td>
<td>0,3</td>
</tr>
<tr>
<td>0,5 bis 1 m/s</td>
<td>34</td>
<td>29</td>
<td>25</td>
<td>0,1</td>
</tr>
<tr>
<td><0,5 m/s</td>
<td>51</td>
<td>38</td>
<td>36</td>
<td>-0,1</td>
</tr>
</tbody>
</table>

Die gravimetrischen PM10-Daten zeigen damit eine deutlich andersartige Abhängigkeit von der Windgeschwindigkeit als die kontinuierlichen TSP-Messwerte (Kapitel 8.7.1), bei denen sich im Winter nur eine geringfügige und im Sommer keine Abhängigkeit von der Windgeschwindigkeit abzeichnet.

Die Unterschiede können einerseits in den verschiedenen Mittelungszeiträumen liegen, wodurch bei Tagesmittelwerten eine Glättung sowohl des Verlaufes der Konzentration wie der Windgeschwindigkeit bewirkt wird. Die wenig ausgeprägte Windgeschwindigkeitsabhängigkeit der TSP-Daten kann damit zusammen hängen, dass höhere TSP-Konzentrationen in der Regel tagsüber bei höheren
Windgeschwindigkeiten auftreten. Auszuschließen ist, dass höhere TSP-Konzentrationen auf Winderosion bei höheren Windgeschwindigkeiten zurückgehen könnten, da Winderosion bei den in Wolfsberg auftretenden „hohen“ Geschwindigkeiten bis 4 m/s kaum zu erwarten ist.

8.8 Die Abhängigkeit der PM10- und Schwebestaubbelastung vom Temperaturgradienten

Die PM10-Konzentration zeigt in Wolfsberg – ebenso wie in St. Andrä und Magersdorf – eine klare Abhängigkeit vom Temperaturgradienten; ungünstige Ausbreitungsbedingungen (starke Inversionen mit Temperaturdifferenzen unter -1°C) sind mit wesentlich höheren PM10-Konzentrationen verbunden als labile Schichtung.

Die Windgeschwindigkeit zeigt eine nur minimale Korrelation mit der Temperaturschichtung; im Winter sind labile Temperaturgradienten mit etwas höheren Windgeschwindigkeiten (Mittel 0,6 m/s) verbunden als stabile Schichtung (0,4 m/s).

Tabelle 28: Abhängigkeit der gravimetrischen PM10-Konzentration in Wolfsberg (µg/m³) von der Temperaturdifferenz St. Andrä – St. Georgen, Mai 2002 – April 2004

<table>
<thead>
<tr>
<th>Temperaturdifferenz</th>
<th>Mai 2005 – April 2004</th>
<th>Winter</th>
<th>Sommer</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Andrä – St. Georgen (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bis -1</td>
<td>53</td>
<td>53</td>
<td>33</td>
</tr>
<tr>
<td>> -1 bis 0</td>
<td>41</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>> 0 bis +0,8</td>
<td>34</td>
<td>43</td>
<td>29</td>
</tr>
<tr>
<td>> 0,8</td>
<td>28</td>
<td>33</td>
<td>25</td>
</tr>
</tbody>
</table>

Ein deutlich anderes Bild ergibt sich, wenn nur die TMW über 50 µg/m³ in Wolfsberg ausgewertet werden. TMW über 50 µg/m³ treten praktisch ausschließlich bei Inversionslagen auf, wobei sich eine klare Abhängigkeit von der vertikalen Struktur – Bodeninversion, abgehobene Inversion oder hochreichende, am Boden aufsetzende Inversion – abzeichnen (Abbildung 35). Die qualitative Auswertung des Temperaturprofils in Kapitel 8.14 anhand der Zeitverläufe der Temperaturmessungen zeigt, dass in Wolfsberg abgehobene Inversionen mit höherer PM10-Belastung verbunden sind als Bodeninversionen (Tabelle 29). Die mittlere PM10-Konzentration (an Tagen mit über 50 µg/m³) beiträgt in Wolfsberg bei abgehobener Inversion 73 µg/m³, an Tagen mit hochreichender Inversion 69 µg/m³ und bei Bodeninversion 63 µg/m³.

Überschreitungen bei Inversionswetterlagen

Tabelle 29: PM10-Belastung bei Inversionen

<table>
<thead>
<tr>
<th>Temperaturdifferenz</th>
<th>PM10-Belastung (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Andrä – St. Georgen (°C)</td>
<td></td>
</tr>
<tr>
<td>bis -1</td>
<td>73</td>
</tr>
<tr>
<td>> -1 bis 0</td>
<td>69</td>
</tr>
<tr>
<td>> 0 bis +0,8</td>
<td>63</td>
</tr>
<tr>
<td>> 0,8</td>
<td></td>
</tr>
</tbody>
</table>

23 im Sommer treten nur an wenigen Tagen Temperaturdifferenzen unter –1°C auf.
Abbildung 35: Schematische Darstellung des Temperaturprofils bei Bodeninversion, abgehobener Inversion und hochreichender Inversion

Tabelle 29: Abhängigkeit der PM10-Konzentration (Tage über 50 µg/m³ in Wolfsberg) vom vertikalen Temperaturprofil, µg/m³

<table>
<thead>
<tr>
<th></th>
<th>Alle Tage</th>
<th>Gleichzeitige Messung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wolfsberg</td>
<td>Wolfsberg</td>
</tr>
<tr>
<td>Bodeninversion</td>
<td>73</td>
<td>65</td>
</tr>
<tr>
<td>Hochreichende, am Boden aufsetzende Inversion</td>
<td>69</td>
<td>72</td>
</tr>
<tr>
<td>Abgehobene Inversion</td>
<td>63</td>
<td>61</td>
</tr>
</tbody>
</table>

Anders sehen die Verhältnisse aus, wenn man sich auf jene Tage beschränkt, an denen in Wolfsberg, St. Andrä und Magersdorf gleichzeitig Daten vorliegen und in Wolfsberg der TMW über 50 µg/m³ lag (wobei hier der ausgewertete Datensatz in St. Andrä und Magersdorf auch TMW unter 50 µg/m³ umfasst). Innerhalb dieses Datensatzes treten die höchsten PM10-Konzentrationen bei hochreichender Inversion auf.

Beschränkt man die Auswertung auf jene Tage, an denen in St. Andrä der TMW über 50 µg/m³ lag, so ergibt sich für Tage mit abgehobener Inversion im Mittel eine PM10-Konzentration von 59 µg/m³, bei hochreichender Inversion 64 µg/m³, bei Bodeninversion 60 µg/m³.

Im Zeitraum von 15.10.2004 bis 20.1.2005 liegen parallel zu Wolfsberg gravimetrische PM10-Daten von Lavamünd und Gurtschitschach vor. In diesem Zeitraum wurde für 35 Tage, an denen in Wolfsberg der TMW über 50 µg/m³ lag,
die Differenz der PM10-Konzentration zwischen Wolfsberg und Lavamünd bzw. Gurtschitschach in Hinblick auf die vertikale Temperaturschichtung ausgewertet. Dabei zeigt sich eine geringe Abhängigkeit der Differenz zwischen Wolfsberg und Lavamünd bzw. Gurtschitschach von der Temperaturschichtung; sie liegt für beide Messstellen an Tagen mit abgehobener Inversion bei 28 µg/m³, an Tagen mit hochreichender Inversion bei 32 µg/m³ und an (zwei) Tagen mit Bodeninversion bei 28 µg/m³.

8.9 Die Abhängigkeit der PM10- und Schwebestaubbelastung von der Niederschlagsmenge

Die PM10-Tagesmittelwerte wurden nach den Niederschlagsklassen „kein Niederschlag“ (0 mm), tägliche Niederschlagsmenge <5 mm, 5 bis <10 mm, 10 bis <20 mm sowie über 20 mm (im Winterzeitraum werden die Klassen ab 10 mm zusammengefasst, da kaum Niederschläge über 20 mm auftraten) ausgewertet.

Tabelle 30: Zusammenhang von PM10-Belastung (µg/m³), Windgeschwindigkeit, Temperatur und Temperaturdifferenz St. Andrä – St. Georgen mit der Niederschlagsmenge (Klagenfurt), Mai 2002 – April 2004

<table>
<thead>
<tr>
<th>Niederschlag (mm)</th>
<th>PM10 Wolfsberg (µg/m³)</th>
<th>PM10 St. Andrä (µg/m³)</th>
<th>PM10 Magersdorf (µg/m³)</th>
<th>Wige Wolfsberg (m/s)</th>
<th>Temperatur Wolfsberg (°C)</th>
<th>Temperaturgradient St. Andrä – St. Georgen (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>38</td>
<td>35</td>
<td>31</td>
<td>0,6</td>
<td>9,0</td>
<td>0,0</td>
</tr>
<tr>
<td>< 5</td>
<td>35</td>
<td>28</td>
<td>26</td>
<td>0,5</td>
<td>10,8</td>
<td>0,4</td>
</tr>
<tr>
<td>5 bis < 10</td>
<td>33</td>
<td>30</td>
<td>29</td>
<td>0,5</td>
<td>10,4</td>
<td>0,3</td>
</tr>
<tr>
<td>10 bis <20</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>0,5</td>
<td>13,4</td>
<td>0,6</td>
</tr>
<tr>
<td>≥20</td>
<td>27</td>
<td>18</td>
<td>18</td>
<td>0,6</td>
<td>14,1</td>
<td>0,7</td>
</tr>
</tbody>
</table>
Tabelle 31: Zusammenhang von PM10-Belastung (µg/m³), Windgeschwindigkeit, Temperatur und Temperaturdifferenz St. Andrä – St. Georgen mit der Niederschlagsmenge (Klagenfurt), Mai 2002 – April 2004, Wintermonate

<table>
<thead>
<tr>
<th>Niederschlag (mm)</th>
<th>PM10 Wolfsberg (µg/m³)</th>
<th>PM10 St. Andrä (µg/m³)</th>
<th>PM10 Magersdorf (µg/m³)</th>
<th>Wige Wolfsberg (m/s)</th>
<th>Temperatur Wolfsberg (°C)</th>
<th>Temperaturgradient St. Andrä – St. Georgen (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45</td>
<td>38</td>
<td>34</td>
<td>0,5</td>
<td>1,9</td>
<td>-0,3</td>
</tr>
<tr>
<td>< 5</td>
<td>45</td>
<td>34</td>
<td>34</td>
<td>0,4</td>
<td>2,7</td>
<td>0,0</td>
</tr>
<tr>
<td>5 bis < 10</td>
<td>38</td>
<td>32</td>
<td>32</td>
<td>0,4</td>
<td>3,7</td>
<td>0,0</td>
</tr>
<tr>
<td>≥10</td>
<td>31</td>
<td>25</td>
<td>25</td>
<td>0,5</td>
<td>7,0</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Abnahme bei Niederschlag

Die PM10-Belastung nimmt in Wolfsberg bei Niederschlagsmengen ab 5 mm mit zunehmender Niederschlagsmenge deutlich ab; in St. Andrä und Magersdorf ist eine deutliche Abnahme der PM10-Konzentration mit zunehmender Niederschlagsmenge erst ab 10 mm festzustellen.

Einfluss Ausbreitungsbedingungen

8.10 Mittlere Tagesgänge

Mittlere Tagesgänge der Schadstoff-Konzentration geben wichtige Hinweise zur Quellzuordnung durch

- den Vergleich mit dem zeitlichen Muster von gasförmigen Schadstoffen, deren Quellen besser bekannt sind;
- den Vergleich mit Emissionen, deren zeitliches Muster bekannt ist.
Zu berücksichtigen sind dabei jeweils andere Einflussfaktoren, die ein tagesperiodisches Verhalten zeigen, vor allem die Ausbreitungsbedingungen, welche in der Nacht ungünstig sind und dadurch, bei gleicher Emission, höhere Schadstoffkonzentrationen bewirken als die günstigeren Ausbreitungsbedingungen tagsüber.

8.10.1 Einfluss des Straßenverkehr

Die Tagesgänge der Zählstelle Donnersbergtunnel sind denen des Gräberntunnels sehr ähnlich. An Montagen zeigt sich ein ausgeprägtes Maximum des Gesamtverkehrs um etwa 8:00, dieses ist an den anderen Tagen etwas zu späteren Zeiten hin verschoben. Gegen Mittag geht das Verkehrsaufkommen etwas zurück um zwischen 16:00 und 17:00 wieder anzusteigen, danach nimmt der Verkehr wieder ab. An Sonntagen steigt das Verkehrsaufkommen deutlich später an, das Maximum tritt erst gegen 18:00 auf. Beim Lkw-Verkehr steigt das Verkehrsaufkommen verglichen mit den Gesamt-Kfz etwas früher an, um dann den Tagen über relativ konstant zu bleiben.

Von der Klagenfurter Straße, an der die Messstelle in Wolfsberg liegt, liegen keine Tagesgänge vor. Näherungsweise kann angenommen werden, dass der Tagesgang vergleichbar mit dem auf der A2 ist.

24 Die Daten wurden freundlicherweise von Hrn. Koller, BMVIT, zur Verfügung gestellt.
Ebenso wenig liegen Tagesgänge von anderen Emissionsquellen (Hausbrand, Industrie, ...) vor.

8.10.2 Gasförmige Schadstoffe

Abbildung 37: Mittlere Tagesgänge der Konzentration von NOx und SO₂, Mittel Dienstag bis Donnerstag, Winter 2002/03

NOx-Maximum am Morgen

Die NOx-Konzentration weist im Winter unter der Woche (Dienstag – Donnerstag) in Wolfsberg und St. Andrä ein scharfes Maximum am Morgen (8:00) (Wolfsberg bis 135 ppb) und ein flacheres Maximum am Abend (um 18:00) (Wolfsberg bis 85 ppb) auf; nachmittags sinkt die NOx-Konzentration in Wolfsberg auf 45 ppb, in der zweiten Nachthälfte auf 30 ppb. Diese mittleren Tagesgänge deuten auf einen dominierenden Einfluss des Straßenverkehrs hin.

Sonntag Maximum abends

An Sonntagen fehlt in Wolfsberg und St. Andrä das morgendliche NOx-Maximum völlig, die NOx-Belastung erreicht vormittags 35 ppb und sinkt nachmittags auf
20 ppb; abends steigt die NOx-Konzentration bis 45 ppb (Abbildung 38). Der Konzentrationsanstieg am Abend kann Emissionen des Hausbrandes zugeordnet werden.

Die beiden NOx-Messstellen in Klagenfurt zeigen markante Maxima morgens und abends, die, anders als im Lavanttal, ungefähr gleiche Konzentrationen erreichen (morgens 170 ppb an der Völkermarkterstraße, 80 ppb an der Koschatstr.). Die Konzentrationsunterschiede der beiden Klagenfurter Messstellen sind durch die höheren Verkehrs- und Siedlungsdichten an der Völkermarkterstraße bedingt; das hohe Konzentrationsmaximum am Abend lässt sich den Emissionen des Hausbrandes zuordnen.

Bei SO₂ sind die Unterschiede zwischen Wochentagen (Di-Do) und Sonntagen nur gering. Die SO₂-Konzentration steigt in Wolfsberg, St. Andrä, Bleiburg und Frantschach am Vormittag an (Maximum ca. 10:00, Wolfsberg 8 µg/m³), geht nachmittags leicht zurück und steigt abends leicht an. Sehr wahrscheinlich wird die SO₂-Konzentration am Talboden des Lavanttales von Hausbrandemissionen dominiert. Frantschach weist im Lavanttal die höchste SO₂-Belastung auf; der Konzentrationsanstieg am Vormittag könnte hier durch Schadstofftransport aus dem Zellstoffwerk bei einsetzendem Hangaufwind bedingt sein.

Die höchste SO₂-Belastung in Kärnten weist die Messstelle Klagenfurt Koschatstraße auf, deren ungewöhnlicher Tagesgang mit einem ausgeprägten Maximum am frühen Nachmittag sehr wahrscheinlich durch Einmischen höher belasteter Luft aus höheren Schichten bedingt ist; die wahrscheinlichste SO₂-Quelle stellt der Schlot des Heizkraftwerkes Klagenfurt dar (siehe SPANGL&NAGL (2003a)). Die erhöhte SO₂-Konzentration am Abend lässt sich Hausbrandemissionen zuordnen.
Im Sommer zeigen die NOx-Tagesgänge unter der Woche (Di-Do, Abbildung 39) ein markantes Morgenmaximum (Wolfsberg 70 ppb) und ein nur minimal ausgeprägtes Abendmaximum (Wolfsberg 35 ppb, nachmittags 25 ppb). An Sonntagen (Abbildung 40) fehlt das Morgenmaximum völlig. Diese Tagesgänge sind primär Emissionen des Straßenverkehrs zuzuordnen.

Die mittleren Tagesgänge von SO$_2$ (wobei die Konzentration deutlich niedriger ist als im Winter) zeigen unter der Woche in Wolfsberg einen Anstieg am Morgen parallel zu NOx und ein schwaches Abendmaximum. Vermutlich lassen sich dafür Emissionen des Straßenverkehrs verantwortlich machen. Der an Sonntagen erkennbare SO$_2$-Tagesgang zeigt in Wolfsberg, etwas ausgeprägter in St. Andrä und St. Georgen einen Anstieg ab 10:00, für den möglicherweise Einmischen belasteter Luft aus höheren Schichten bei Ferntransport aus Slowenien verantwortlich ist.
Abbildung 39: Mittlere Tagesgänge der Konzentration von NOx und SO$_2$, Mittel Dienstag bis Donnerstag, Sommer 2003

Abbildung 40: Mittlere Tagesgänge der Konzentration von NOx und SO$_2$, Sonntag, Sommer 2003
8.10.3 Kontinuierliche Staub-Daten

Maxima morgens und abends

Die TSP-Konzentration weist im Winter (Abbildung 41) in Wolfsberg und St. Andrä an Dienstag-Donnerstag einen NOx ähnlichen Tagesgang mit einem Maximum am Morgen (8:00, Wolfsberg 65 µg/m³) und einem flacheren am Abend (50 µg/m³) auf. An Sonntagen sind die Maxima deutlich flacher, wobei vormittags etwas später als unter der Woche die höchsten TSP-Konzentrationen (Wolfsberg 10:00 40 µg/m³) erreicht werden. Neben den Tagesgängen der Staubbelastung werden auch jene des Verkehrs auf der A2 dargestellt.

Diese mittleren Tagesgänge deuten auf einen großen Einfluss des Straßenverkehrs auf die TSP-Belastung in Wolfsberg und St. Andrä hin, der auf einem von Schadstoffanreicherung im Lavanttal und Hausbrandemissionen bedingten Sockel aufsetzt.

St. Georgen zeigt einen nur schwach ausgeprägten Tagesgang mit einem leichten Anstieg am Morgen, der auf Schadstofftransport vom Talboden her zurückgehen dürfte.

Anders als in Wolfsberg und St. Andrä ist an den beiden Klagenfurter Messstellen das abendliche Konzentrationsmaximum wesentlich höher als jenes am Morgen, was in Klagenfurt auf einen vergleichsweise wesentlich höheren Beitrag von Hausbrandemissionen schließen lässt.

Im Sommer ist der TSP-Tagesgang an Dienstagen bis Donnerstagen in Wolfsberg und St. Andrä flacher als im Winter, weist aber einen ähnlichen Verlauf auf wie...
NOx mit einem relativ ausgeprägten Morgenmaximum (Wolfsberg 8:00 50 µg/m³). Das Abendmaximum (40 µg/m³) ist ausgeprägter als bei NOx.

An Sonntagen treten die höchsten TSP-Konzentrationen in der zweiten Nachthälfte auf (Wolfsberg um 30 µg/m³), nachmittags sinkt die Konzentration bis unter 20 µg/m³. Eine Morgenspitze zeichnet sich unscharf ab, abends steigt die TSP-Konzentration wieder auf über 30 µg/m³.

Abbildung 42: Mittlere Tagesgänge der Konzentration von NOx und SO₂, Mittel Dienstag – Donnerstag sowie Sonntag, Sommer 2003

8.11 Mittlere Wochengänge

8.11.1 Wochengang des Verkehrs

Der Wochengang des Verkehrs im Untersuchungsgebiet liegt lediglich für zwei Zählstellen der A2 vor (Donnersbergtunnel und Gräberntunnel). Beim Gesamtverkehr zeigt sich ein deutliches Maximum an Freitagen, der zweithöchste DTV tritt an Samstagen auf. Das Minimum des Verkehrs ist an Dienstagen zu verzeichnen. Beim Lkw-Verkehr tritt das Maximum an Montagen auf, am Wochenende geht der Lkw-Verkehr auf etwa 40% verglichen mit dem wochentäglichen Verkehr zurück.

Abbildung 43: Wochengang des Gesamt- und des Lkw-Verkehrs auf der A2

Aus dem Wochengang des Verkehrs kann der Wochengang der Emissionen gemäß dem Handbuch der Emissionsfaktoren errechnet werden. Unter der Annahme einer zulässigen Höchstgeschwindigkeit von 130 km/h für Pkw und einer Steigung von 0% ergibt sich der in Abbildung 44 dargestellte Verlauf der Emissionen.

Abbildung 44: Wochengang der PM10-Abgasemissionen auf der A2, berechnet aus Verkehrsdaten der Zählstelle Gräberntunnel

Die maximalen Emissionen treten an Freitagen auf, v. a. aufgrund des höheren Pkw-Aufkommens.
8.11.2 Wochengang der NOx-Belastung

Abbildung 45: Wochengang der NOx-Konzentration in den Jahren 2002-2004

8.11.3 Wochengang der PM10-Belastung

Der Wochengang der PM10-Belastung zeigt in Wolfsberg eine ansteigende Tendenz mit einem Maximum an Freitagen, an diesen ist die Belastung um etwa 10% höher als im Mittel. Am niedrigsten – um etwa -13% gegenüber dem Mittel – ist die Belastung an Sonntagen. Etwas deutlicher ausgeprägt ist der Wochengang an der Messstelle Klagenfurt Völkermarkterstraße, an dieser nimmt die Belastung an Sonntagen um 20% gegenüber dem Mittel ab. Geringer ausgeprägt ist der Wochengang an den Messstellen St. Andrä und Magersdorf, an letzterer zeigen sich Unterschiede von lediglich +6% und -6% an Freitagen bzw. Dienstagen gegenüber dem Wochenmittel.

Kaum Unterschiede zeigen sich bei der getrennten Betrachtung der Sommer- und Winterhalbjahre. Das Maximum tritt an allen Messstellen in beiden Halbjahren zwischen Mittwoch und Freitag auf, am geringsten belastet sind zumeist die Sonntage, lediglich in Magersdorf sind im Winter die Dienstage im Mittel am geringsten belastet, im Sommer die Samstage. Allerdings ist bei dieser Messstelle – und auch bei St. Andrä – der Datensatz am geringsten, diese Unterschiede sind daher u. U. nicht signifikant.

Die Wochengänge der PM10-Messstellen im Lavanttal spiegeln einerseits den Wochengang der PM10-Emissionen wider, welche zwischen Montag und Freitag höher sind als an Wochenenden, zum anderen einen Kumulationseffekt, aufgrund dessen die PM10-Belastung bis zum Freitag hin mehr oder minder kontinuierlich ansteigt.

Anders als an Messstellen in außeralpinen Städten geht die PM10-Belastung am Wochenende vergleichsweise stark zurück, woraus zu schließen ist, dass der

8.11.4 Wochengang der PM10-Grenzwertüberschreitungen

In Tabelle 32 und Abbildung 48 ist die Anzahl der PM10-Tagesmittelwerte über 50 µg/m³ an den einzelnen Wochentagen dargestellt. In Tabelle 32 wurde auch die Gesamtzahl aller PM10-Tagesmittelwerte angegeben, da diese St. Andrä und Magersdorf deutlich geringer ist als an den anderen Messstellen.

Tabelle 32: Wochengang der PM10-Tagesmittelwerte über 50 µg/m³, 2002 bis 2004

<table>
<thead>
<tr>
<th>Wochentag</th>
<th>Wolfsberg</th>
<th>St. Andrä</th>
<th>Magersdorf</th>
<th>Arnoldstein</th>
<th>Klagenfurt V.</th>
<th>Villach</th>
<th>Vorhegg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montag</td>
<td>17</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>32</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Dienstag</td>
<td>17</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>32</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Mittwoch</td>
<td>17</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>34</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Donnerstag</td>
<td>24</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Freitag</td>
<td>32</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>33</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Samstag</td>
<td>29</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>30</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Sonntag</td>
<td>19</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>20</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Gesamtzahl</td>
<td>967</td>
<td>381</td>
<td>379</td>
<td>1007</td>
<td>1070</td>
<td>1080</td>
<td>974</td>
</tr>
</tbody>
</table>

Abbildung 48: Wochengang der PM10-Tagesmittelwerte über 50 µg/m³

Vergleichbar zum Wochengang der PM10-Belastung treten die meisten Überschreitungen in Wolfsberg an Freitagen auf, ebenso in St. Andrä, Arnoldstein und Villach. In Klagenfurt wurden die meisten Überschreitungen mittwochs registriert, in Magersdorf samstags.
Dieser Wochengang zeigt deutlich Variationen, die von der Temperaturschichtung bestimmt werden (siehe Kapitel 8.8 und 8.14).

An Tagen mit Bodeninversion treten TMW über 50 µg/m³ bevorzugt an Freitagen und Samstagen (im Mittel je 20%) auf, am seltensten an Sonntagen (5%).

Tage mit abgehobenen oder hochreichenden Inversionen weisen eine gleichmäßigere Verteilung der TMW über 50 µg/m³ auf die Wochentage auf, wobei mit 20% Häufigkeit bei hochreichenden Inversionen Freitage immer noch am stärksten betroffen sind, die Häufigkeit mit 16% an Sonntagen aber höher ist als im Mittel über Montag bis Donnerstag (10%). Am seltensten treten bei hochreichenden Inversionen TMW über 50 µg/m³ an Montag bis Mittwoch auf.

Daraus lässt sich schließen, dass an Tagen mit Bodeninversion lokale Emissionen deutlich stärker zum Tragen kommen, sodass der – von den Straßenverkehrsemissionen wesentlich bestimmte – Wochengang der TMW über 50 µg/m³ mit einem Maximum an Freitagen und einem starken Rückgang ausgeprägter ist. Demgegenüber spielt bei abgehobenen oder hochreichenden Inversionen Schadstoffanreicherung im Lavanttal, die durch Emissionen im gesamten Lavanttal beeinflusst wird, eine stärkere Rolle, sodass der Wochengang ausgeglichener ist. Der Wochengang hoher PM10-TMW folgt zeitverzögert den Emissionen, sodass zu Wochenbeginn TMW über 50 µg/m³ am seltensten auftreten.

8.12 Einfluss von Punktquellen

Der Emissionskataster (siehe Kapitel 5.1) weist die Mondi Packaging Frantschach AG als wesentlichste Punktquelle für Staub im Bezirk Wolfsberg aus. Weder die Tagesgänge noch die Windrosen geben jedoch eindeutige Hinweise auf einen möglichen Einfluss der Zellstofffabrik oder anderer bedeutender Punktquellen (Fa. Offner Holzindustrie, KW St. Andrä) auf die PM10-Belastung. Auch eine Analyse der Werkstillstandszeiten – jeweils wenige Tage pro Jahr im April oder November – gibt kaum Hinweise auf einen Beitrag zur PM10-Belastung.

8.13 Schadstofftransport aus Slowenien

In diesem Kapitel werden mögliche Beiträge von Schadstofftransport aus Slowenien zur PM10-Belastung in Wolfsberg diskutiert.

Während SO$_2$-Transport aus Slowenien nach Südostkärnten und in die Südsteiermark ausführlich untersucht wurde und vom dichten SO$_2$-Messnetz dieser Region (Soboth, St. Georgen, Bleiburg) auch gut erfasst wurde25, liegen keine entsprechenden Untersuchungen für Staub vor. Dies korrespondiert mit der Tatsache, dass die Messstellen in Grenznähe in Südostkärnten keine erhöhten TSP- oder PM10-Konzentrationen gemessen haben bzw. messen.

25 SO$_2$-Transport konnte, solange die Messstellen Völkermarkt und Ferlach bestanden, mitunter detailliert von St. Georgen über Bleiburg, Ferlach und Villach bis Vorhegg verfolgt werden.
Ungeachtet dessen wird im Folgenden die Frage diskutiert, ob und in welchem Ausmaß Schadstofftransport aus Šoštanj zu erhöhter PM10-Belastung in Wolfsberg beitragen kann.

Grundsätzlich lassen sich dazu drei Möglichkeiten angeben:

- Transport primär emittierter Partikel vom Kraftwerk Šoštanj ins Lavanttal;
- Transport sekundär gebildeten Sulfats aus SO₂-Emissionen des Kraftwerks Šoštanj;
- Transport von SO₂ von Slowenien ins Lavanttal und Bildung von Sulfat in dieser Region.

8.13.1 SO₂- und Staub-Emissionen

wesentlich geringer als bei SO$_2$. Allerdings können die SO$_2$-Emissionen, die im Jahre 2001 immerhin noch 10 kt betrugen (und damit etwa einem Viertel der gesamtvösterreichischen SO$_2$-Emissionen entsprechen) zur Bildung von Ammoniumsulfat und damit indirekt zur PM10-Belastung beitragen.

8.13.2 SO$_2$-Belastungsepisoden

PM10-Anstieg bei SO$_2$-Anstieg?

Die Temperaturstruktur war überwiegend neutral bis labil, auch nachts bildete sich zumeist keine Bodeninversion aus.

In Bleiburg, auf der Soboth und in St. Georgen wurden SO$_2$-Spitzen bis über 50 µg/m3 registriert, die aufgrund der Windverhältnisse relativ deutlich Transport aus Slowenien zuzuordnen sind. In Wolfsberg war die SO$_2$-Belastung deutlich niedriger und erreichte lediglich am 8.4. eine Spitze über 40 µg/m3.

Schadstofftransport aus dem Tal

Die TSP-Konzentration war in Wolfsberg mit TMW zwischen 36 und 45 µg/m3 mäßig hoch. Die relativ hohe TSP- bzw. PM10-Belastung an den höher gelegenen Messstellen St. Georgen (29 bis 44 µg/m3 als TMW) und Vorhegg (18 bis 27 µg/m3) lässt sich eher mit Schadstofftransport aus dem Tal als mit Transport aus Slowenien erklären, zumal die TSP-Konzentration in St. Georgen keineswegs mit jener von SO$_2$ parallel läuft.

Am 31.5.2002 lässt sich SO$_2$-Transport aus Slowenien identifizieren, der v. a. St. Georgen erreichte (TMW 30 µg/m3, Spitzen bis 60 µg/m3). Österreich lag am Südostrand eines Hochdruckgebietes im Bereich flacher Druckverteilung. In St. Georgen bildete sich wie am Talboden eine Talwindzirkulation aus, während der erhöhten SO$_2$-Konzentration wehte Südwind. Die Temperaturstruktur war labil.

Soboth, Bleiburg und Wolfsberg registrierten deutlich niedrigere SO$_2$-Konzentrationen als St. Georgen bei ähnlichem Verlauf.

Die TSP-Konzentration betrug in Wolfsberg 27 µg/m3 als TMW, die PM10-Konzentration betrug 29 µg/m3, sodass der SO$_2$-Transport aus Slowenien jedenfalls nicht zu erhöhter TSP- bzw. PM10-Belastung im Lavanttal führte.

Von 8. bis 10.7.2002 wurden in St. Georgen, Bleiburg und St. Andrä SO$_2$-Spitzen knapp unter 50 µg/m3 registriert, in Wolfsberg um 40 µg/m3. Österreich lag am Südostrand eines ausgedehnten mitteleuropäischen Hochdruckgebietes im Bereich großräumiger südwestlicher Strömung. Das räumlich einheitliche Belastungsbild
deutet auf SO\textsubscript{2}-Transport aus Slowenien hin, der jeweils tagsüber bei südlichem Wind zu beobachten war. Ob die vergleichbaren SO\textsubscript{2}-Spitzen in Frantschach ebenfalls Transport aus Slowenien oder lokalen Emissionen zuzuordnen sind, lässt sich nicht sagen.

Die Temperaturschichtung war tagsüber labil, nachts neutral bis leicht stabil. Die TSP-Konzentration stieg von Tag zu Tag an (von 27 auf 48 µg/m3 in Wolfsberg, TMW), die PM10-Konzentration stieg ebenfalls von 22 auf 43 µg/m3; die TSP-Belastung war räumlich und zeitlich sehr einheitlich und lief keineswegs parallel zu SO\textsubscript{2}. Sie lässt sich auf Schadstoffakkumulation im Lavanttal zurückführen, die auch St. Georgen (13 bis 34 µg/m3 als TMW) erreichte; wie weit dafür Sulfatbildung im Lavanttal aus dem importierten SO\textsubscript{2} verantwortlich war, ist schwer zu sagen.

Starker SO\textsubscript{2}-Transport aus Slowenien (Spitzen über 50 µg/m3 auf der Soboth) trat am 17.2.2003 auf, der auch noch Vorhegg (bis 20 µg/m3) erreichte. An diesem Tag mit relativ günstigen Ausbreitungsbedingungen lag die PM10-Konzentration in Wolfsberg bei 50 µg/m3 (TMW). Der folgende Zeitraum (mit PM10-Konzentrationen bis 104 µg/m3 am 19.2.) war von starken Bodeninversionen gekennzeichnet, d. h. von meteorologischen Verhältnissen, bei denen die chemischen Analysen auf sehr geringe Sulfat-Konzentrationen hindeuten.

Die dargestellten SO\textsubscript{2}-Episoden zeigen klar – ebenso wie Situationen mit SO\textsubscript{2}-Transport aus Slowenien, die im Rahmen der PM10-Episoden in Kapitel 8.14 dargestellt werden – dass starker SO\textsubscript{2}-Transport aus Slowenien mit günstigen Ausbreitungsbedingungen zusammen fällt, d. h. mit Verhältnissen, bei denen niedrige PM10-bzw. TSP-Konzentrationen beobachtet werden.

In Hinblick auf mögliche Sulfatbildung aus dem importierten SO\textsubscript{2} ist nochmals festzuhalten, dass die chemischen Analysen (Kapitel 9) sehr klar erhöhte Sulfatkonzentrationen bei abgehobenen Inversionen ausweisen, welche an allen untersuchten Tagen mit SO\textsubscript{2}-Transport aus Slowenien nicht auftraten.

8.13.3 Erhöhte PM10-Belastung in Lavamünd

Die höchsten PM10-Konzentrationen wurden zwischen 8. und 11.2.2005 in Lavamünd gemessen, der maximale TMW betrug 71 µg/m3 am 9.2.

Während dieser Tage bildete sich nachts jeweils eine ausgeprägte Bodeninversion aus; im Höhenbereich zwischen Görlich und Magdalensberg bestand meist Isothermie, d. h. stabile Temperaturschichtung, zwischen Magdalensberg und Gerlitzen eine starke abgehobene Inversion. Nachmittags labilisierte sich jeweils die Temperaturschichtung.

In Lavamünd wehte bis 8.2. morgens Südostwind; am Vormittag des 8.2. stellte sich Nordwestwind ein. Jeweils am 8. und 9.2. drehte der Wind Lavamünd von Nachmittag bis spät abends auf Südost, ab der Nacht 9./10.2. wehte durchwegs Nordwestwind.
Die TSP-, NO- und NO\textsubscript{2}-Belastung zeigt an den Messstellen im Lavanttal einen Tagesgang, der durch das Zusammenspiel von Ausbreitungsbedingungen und bodennahen Emissionen bestimmt wird, mit erhöhten Konzentrationen jeweils morgens und abends und einem Konzentrationsrückgang über Mittag; aufgrund der starken morgendlichen Inversionen treten morgens hohe NO-Spitzen (über 250 µg/m3) in Wolfsberg auf. Die TSP-Spitzen lagen meist um 120 µg/m3.

Die SO\textsubscript{2}-Konzentration weist in Wolfsberg einen Zeitverlauf ähnlich NO\textsubscript{2} auf, mit einem Minimum über Mittag; sie spiegelt damit deutlich einen dominierenden Beitrag bodennaher Emissionen wider und gibt keinerlei Hinweis auf Schadstofftransport aus größeren Höhen. Die SO\textsubscript{2}-Spitzen lagen meist um oder unter 20 µg/m3.

Einen deutlichen Hinweis von Transport aus Slowenien stellt die SO\textsubscript{2}-Spitze in Bleiburg am 7.2. (HMW bis 45 µg/m3, TMW 15 µg/m3) bei Südostwind dar; an den folgenden Tagen mit steigender TSP-Konzentration ging die SO\textsubscript{2}-Konzentration in Bleiburg zurück. Am 9.2. spät abends trat in Lavamünd St. Georgen eine SO\textsubscript{2}-Spitze (bis 20 µg/m3) auf, die ebenfalls auf Transport aus Slowenien zurückgehen könnte (in Lavamünd Südostwind). Ansonsten folgte der Konzentrationsverlauf von SO\textsubscript{2} in St. Georgen eher jenem in Wolfsberg und St. Andrä. In Lavamünd traten erhöhte SO\textsubscript{2}-Konzentrationen - wie in Bleiburg – am 7.2. nachmittags auf (knapp über 20 µg/m3), allerdings verbunden mit einem Rückgang der TSP-Konzentration.

Der TSP-Konzentrationsverlauf folgt in Lavamünd zumeist nicht jenem der Messstellen am Talboden im Lavanttal, meist eher jenem in St. Georgen. Erhöhte TSP-Konzentrationen fielen in der Nacht 9./10.2. mit erhöhter SO\textsubscript{2}-Konzentration zusammen, am 7. und 8.2. verlief die TSP-Konzentration dagegen eher gegenläufig zu SO\textsubscript{2}.

Am 17.12.2004 – einem Tag mit außerordentlich hoher PM\textsubscript{10}-Konzentration in Wolfsberg (117 µg/m3) und, wie die chemischen Analysen (siehe Kapitel 9) zeigen, sehr hohem Sulfat-Anteil (18 µg/m3) – wurde in Lavamünd ein für diesen Standort hoher PM\textsubscript{10}-TMW von 57 µg/m3 registriert. Wie in Kapitel 9.3 diskutiert, geben weder die meteorologischen Verhältnisse noch das Belastungsbild – mit sehr niedrigen SO\textsubscript{2}-Konzentrationen – irgendeinen Hinweis auf Schadstofftransport aus Slowenien. Die TSP-Konzentration war in Lavamünd während der gesamten Episode niedriger als am Talboden im Lavanttal und folgte relativ eng jener in St. Georgen.

In Lavamünd wehte während der Episode von 11. bis 25.12. fast durchwegs Nordwestwind, was jedenfalls klar gegen Schadstofftransport aus Slowenien spricht.

8.13.4 Räumlicher und zeitlicher Zusammenhang der PM\textsubscript{10}- und SO\textsubscript{2}-Belastung

PM\textsubscript{10}-Transport aus dem Kraftwerk Šoštanj ins Lavanttal sollte in jedem Fall mit stark erhöhter SO\textsubscript{2}-Belastung parallel gehen. Da die SO\textsubscript{2}-Emissionen des Kraftwerkes Šoštanj ca. 20mal höher als die TSP-Emissionen sind, sollte auch bei
relativ rascher Umwandlung von SO\textsubscript{2} in Sulfat26 die SO\textsubscript{2}-Konzentration in der „Abgasfahne“ des Kraftwerkes deutlich höher sein als jene von TSP.

Zur Untersuchung eines möglichen Beitrages von Schadstofftransport aus Šoštanj nach Wolfsberg wurde das räumliche und zeitliche Verhalten der SO\textsubscript{2}-Konzentration im Lavanttal in Relation zu PM\textsubscript{10} bzw. TSP durchleuchtet (siehe auch Kapitel 8.14) und in Tabelle 33 zusammen gestellt. Von 114 Tagen des Zeitraums von Dezember 2002 bis Jänner 2005 mit PM\textsubscript{10}-TMW über 50 µg/m3 in Wolfsberg, die näher untersucht wurden, ließ sich an sieben Tagen anhand des SO\textsubscript{2}-Belastungsbildes Schadstofftransport aus Slowenien identifizieren, an denen auch die TSP-Konzentration in Wolfsberg parallel zu SO\textsubscript{2} anstieg. Diesen stehen 14 Tage gegenüber, an denen die SO\textsubscript{2}-Belastung im Lavanttal von Transport aus Slowenien beeinflusst wurde, an denen die TSP-Konzentration in Wolfsberg allerdings nicht mit SO\textsubscript{2} parallel ging.

Weitere vier Tage ließen sich ausmachen, an denen SO\textsubscript{2} und TSP in Wolfsberg einen parallelen Verlauf zeigen, und die SO\textsubscript{2}-Belastung in St. Georgen oder auf der Soboth erhöht war, an denen aber diese erhöhte SO\textsubscript{2}-Belastung nicht eindeutig auf Transport aus Slowenien zurückgeführt werden kann, sondern (da in St. Georgen nördlicher Wind wehte) auch auf Quellen im Lavanttal zurückgehen kann.

Weitere vier Tage ließen sich ausmachen, an denen SO\textsubscript{2} und TSP in Wolfsberg einen parallelen Verlauf zeigen, und die SO\textsubscript{2}-Belastung in St. Georgen oder auf der Soboth erhöht war, an denen aber diese erhöhte SO\textsubscript{2}-Belastung nicht eindeutig auf Transport aus Slowenien zurückgeführt werden kann, sondern (da in St. Georgen nördlicher Wind wehte) auch auf Quellen im Lavanttal zurückgehen kann.

Tabelle 33: Tage mit einem Einfluss von SO\textsubscript{2}-Transport aus Slowenien auf die TSP-Belastung in Wolfsberg von 114 Tagen mit PM\textsubscript{10}-TMW über 50 µg/m3

<table>
<thead>
<tr>
<th>SO\textsubscript{2}-Transport aus Slowenien sehr wahrscheinlich (davon SO\textsubscript{2}-Spitzen über 20 µg/m3 auf der Soboth oder in St. Georgen)</th>
<th>TSP parallel SO\textsubscript{2}</th>
<th>TSP nicht parallel SO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (3)</td>
<td>14 (4)</td>
<td></td>
</tr>
</tbody>
</table>

Bezogen auf den Gesamtzeitraum, der untersucht wurde, lässt sich an 6% der Tage ein Einfluss von SO\textsubscript{2}-Transport aus Slowenien auf die TSP- bzw. PM\textsubscript{10}-Belastung in Wolfsberg identifizieren, an insgesamt 10% der Tage mit erhöhter Belastung lässt sich Schadstofftransport nicht ausschließen.

Nachdem diese Transportprozesse – zumindest, soweit sie an den SO\textsubscript{2}-Zeitverläufen erkennbar sind – meist nur wenige Stunden anhielten, ist ihr Beitrag zu den PM\textsubscript{10}-Tagesmittelwerten gering anzusetzen.

Nicht exakt beurteilbar ist, in welchem Ausmaß diese SO\textsubscript{2}-Transportereignisse SO\textsubscript{2} ins Lavanttal einbrachten, das dann in der Folge für Sulfatbildung zur Verfügung stand. Insgesamt lassen sich neun Tage im Untersuchungszeitraum (114 Tage) mit starkem SO\textsubscript{2}-Transport aus Slowenien (Spitzen über 20 µg/m3) ausmachen; von diesen Tagen bilden der 10. bis 14.3.2004 eine geschlossene Episode, wobei allerdings ab dem 12.3. die TSP-Konzentration nicht mit SO\textsubscript{2}, sondern mit NO\textsubscript{x} parallel ging.

An den anderen Tagen27 könnte die erhöhte PM\textsubscript{10}-Konzentration in Wolfsberg an ein bis drei Folgetagen von Sulfatbildung infolge dieses SO\textsubscript{2}-Transports beeinflusst

26 Die atmosphärische Lebensdauer von SO\textsubscript{2} beträgt bis vier Tage [SEINFELD&PANDIS, 1998]

worden sein, allerdings folgt die TSP-Konzentration eher jener von NOx und wird somit offenkundig stärker von bodennahen Emissionen bzw. von den bodennahen Ausbreitungsbedingungen beeinflusst als von SO₂-Transport in größeren Höhen.

8.13.5 Korrelationen zwischen PM10 und SO₂

Die Korrelationen der Tagesmittelwerte des Zeitraums von Jänner 2002 bis März 2005 zeigen insgesamt keinen statistischen Zusammenhang zwischen SO₂ und TSP.

Sie geben folgendes Bild:

- Die TSP-Tagesmittelwerte aller Messstellen in Ostkärnten einschließlich Klagenfurt korrelieren relativ hoch (Korrelationskoeffizienten um 0,8; Wolfsberg – St. Andrä 0,90) miteinander.
- Die TSP-Tagesmittelwerte weisen durchwegs Korrelationskoeffizienten um oder unter 0,5 mit den SO₂-Tagesmittelwerten auf – ausgenommen SO₂ in Klagenfurt Koschatstraße, dessen Korrelationen mit TSP an den beiden Klagenfurter Messstellen und in Wolfsberg um 0,63 liegt.
- Die Korrelation der PM10-TMW in Wolfsberg mit SO₂ am selben Standort beträgt 0,55, gegenüber SO₂ in Frantschach 0,41, gegenüber SO₂ in St. Andrä 0,28.
- Die Korrelation der PM10-TMW in Wolfsberg mit SO₂ an den südlicher gelegenen Messstellen, an denen Transport aus Slowenien bei SO₂ häufig erkennbar ist, beträgt 0,18 gegenüber St. Georgen, 0,19 gegenüber Bleiburg und 0,00 gegenüber der Soboth.
- Die Korrelation von TSP in St. Georgen mit SO₂ beträgt 0,38 und ist damit praktisch ident mit jener gegenüber SO₂ in Wolfsberg, St. Andrä oder Klagenfurt.
- Auffällig ist, dass die PM10- bzw. TSP-Konzentration aller Messstellen in Ostkärnten höher mit der SO₂-Konzentration in Klagenfurt Koschatstr. (0,6 bis 0,7) korrelieren als mit der jeweiligen lokalen SO₂-Konzentration; auch dies wird als Hinweis aufgefasst, dass die bodennahen
Ausbreitungsbedingungen28 die bodennahe PM10- bzw. TSP-Belastung in ganz Kärnten stärker beeinflussen als jene Faktoren, die die SO\textsubscript{2}-Konzentration in Ostkärnten beeinflussen (diese dürfte überwiegend von Transport aus Slowenien bestimmt werden).

Insgesamt geben die Korrelationen der Tagesmittelwerte keinen Hinweis auf einen statistischen Zusammenhang zwischen SO\textsubscript{2} an den grenznahen Messstellen im Südosten Kärntens und der PM10- bzw. TSP-Konzentration in Wolfsberg; dies gilt auch für die TSP-Belastung an der höher gelegenen Messstelle St. Georgen, an der Transport aus Slowenien eher zum Tragen kommen kann als in Wolfsberg.

8.13.6 Möglicher Staub-Transport aus Slowenien - Zusammenfassung

Zusammenfassend kann festgehalten werden, dass die vorliegenden Daten und Auswertungen nur in sehr wenigen Fällen Hinweise auf einen Beitrag von Schadstofftransport aus Slowenien zu erhöhter PM10-Belastung (TMW über 50 µg/m3) in Wolfsberg geben:

- Die TSP-Emissionen in Šoštanj sind ca. um einen Faktor 20 niedriger als die SO\textsubscript{2}-Emissionen; entsprechend geringer ist der Einfluss primärer Partikel verglichen mit SO\textsubscript{2}.

- Der Beitrag von aus SO\textsubscript{2}-Emissionen in Šoštanj sekundär gebildeten Partikel dürfte an hochbelasteten Tagen gering sein – hohe Sulfat-Konzentrationen fallen gemäß Kapitel 9 mit abgehobenen Inversionen zusammen, Situationen mit deutlichem SO\textsubscript{2}-Transport aus Slowenien meist mit günstigen Ausbreitungsbedingungen, bisweilen mit Bodeninversionen.

- Die PM10-Belastung korreliert im Raum Wolfsberg kaum mit der SO\textsubscript{2}-Belastung

- Erhöhte PM10-Konzentrationen (ebenso TSP) treten in Wolfsberg praktisch ausschließlich bei ungünstigen Ausbreitungsbedingungen auf, d. h. bei stabiler Temperaturschichtung der Atmosphäre über dem Lavanttal und sehr niedrigen Windgeschwindigkeiten am Talboden. Es handelt sich dabei um Verhältnisse, bei denen weiträumiger Schadstofftransport im stark gegliederten Gelände zwischen Šoštanj (Seehöhe 370 m) und Wolfsberg wenig wahrscheinlich ist. Zwischen dem Paka-Tal, in dem sich das Kraftwerk Šoštanj befindet, und dem Mislinja-Tal, das zum Einzugsgebiet der Drau gehört, befinden sich Berge mit Höhen über 800 m, deren Überströmen bei derart stabiler Temperaturschichtung (auch bei abgehobener Inversion mit Inversionsuntergrenze bis 300 m über Talboden) wenig wahrscheinlich ist. Wie die Untersuchung von Situationen mit offenkundigem SO\textsubscript{2}-Transport aus Slowenien nach Südostkärnten (Kapitel 8.13.1) zeigt, treten derartige Transportereignisse bei günstigen Ausbreitungsbedingungen, d. h. labiler Temperaturschichtung, auf. Zudem müsste belastete Luft, um von Šoštanj

28 Klagenfurt weist die mit Abstand höchste SO\textsubscript{2}-Belastung in Kärnten auf. Wie die Statuserhebung für die PM10-Grenzwertüberschreitung in Klagenfurt Völkermarkterstraße [SPANGL&NAGL, 2003a] ergeben hat, sind SO\textsubscript{2}-Emissionen in Klagenfurt mitverantwortlich für die hohe PM10-Belastung (als Ammoniumsulfat) in Klagenfurt Völkermarkterstraße.
nach Wolfsberg zu gelangen, die gegenläufigen Talwindsysteme im Mislinjat-Tal (abwärts) und anschließend im Drautal und Lavanttal (aufwärts) „bewältigen“. 29

Die PM10-Messungen in Lavamünd ergeben keine Hinweise auf einen wesentlichen Schadstoffeintrag aus Slowenien.

Eine detaillierte Darstellung von Belastungsepisoden mit TMW über 50 µg/m³ findet man in Anhang 3; jene Tage im Dezember 2004 und Jänner 2005, an denen PM10-Inhaltsstoffanalysen durchgeführt wurden, werden in Kapitel 9.3 dargestellt.

Alle untersuchten Tage mit TMW über 50 µg/m³ fallen mit winterlichen Hochdruckwetterlagen zusammen. Im Lavanttal traten sehr ungünstige Ausbreitungsberechnungen mit extrem niedrigen Windgeschwindigkeiten (selten über 0,5 m/s) und regelmäßigen Inversionen zumindest in der Nacht auf. Deutliche Unterschiede lassen sich dabei in Abhängigkeit von der vertikalen Temperaturstruktur erkennen, wobei Bodeninversionen und hochreichende bzw. abgehobene Inversionen v. a. die NOx-Belastung in unterschiedlicher Weise beeinflussen.

Von den 111 Tagen, deren Temperaturverhältnisse einer detaillierten Untersuchung unterzogen werden (siehe Anhang 2), wiesen 32 Tage (29%) nachts bis vormittags eine Bodeninversion auf, die u. U. tagsüber zeitweise in neutrale Schichtung überging. An 47 Tagen (42%) herrschte zumeist eine abgehobene Inversion vor, an 33 Tagen (29%) eine hochreichende Inversion, wobei sich nachts und v. a. morgens eine markante Bodeninversion ausbildete.

Dabei muss allerdings angemerkt werden, dass für die Beurteilung der Temperaturschichtung oberhalb der Höhe von St. Georgen Temperaturmessungen im Klagenfurter Becken, nicht im Lavanttal herangezogen werden, die u. U. nicht für das Lavanttal repräsentativ sind. Dies könnte u.a. dann der Fall sein, wenn höher gelegene Temperaturmessstellen im Klagenfurter Becken kälter sind als im Lavanttal und eine hochreichende Inversion über dem Lavanttal nicht widerspiegeln.

Im folgenden werden die wesentlichen Charakteristika des Belastungsbildes diskutiert.

8.14.1 Stickstoffoxide

Die NO-Konzentration zeigt in Wolfsberg und St. Andrä einen ausgeprägten Tagesgang mit markanten Spitzen am Morgen und am Abend (die bis über 300 µg/m³ erreichen können), die durch das Zusammenwirken ungünstiger Ausbreitungsbedingungen und erhöhter lokaler Emissionen zustande kommen. Nachts sinkt die NO-Konzentration auf wenige 10 µg/m³ ab.

Bei Situationen mit Bodeninversionen (aber labiler oder neutraler Schichtung oberhalb von St. Georgen) sind die morgendlichen NO-Spitzen höher als jene am Abend, wohingegen Situationen mit sehr hochreichenden Inversionen (bis Gerlitzen) höhere Abendmaxima aufweisen.

Die NO₂-Konzentration zeigt an Tagen mit Bodeninversionen wie NO Maxima morgens und abends, wobei das Abendmaximum höher ist. Neben dem zeitlichen Verhalten von NO-Emission und Ausbreitungsbedingungen spielt in diesem Tagesverlauf auch die Oxidation von NO zu NO₂, die tagsüber und abends stärker zum Tragen kommt als morgens, eine Rolle.

An Tagen mit hochreichenden Inversionen fehlt hingegen ein NO₂-Konzentrationsmaximum am Morgen; die NO₂-Konzentration steigt tagsüber an und weist ein flaches Maximum nachmittags bis abends auf.

Vermutlich spielt bei hochreichenden Inversionen lokale Schadstoffanreicherung in Bodennähe eine geringere Rolle als bei Bodeninversionen, wodurch das Morgenmaximum bei NO abgeschwächt wird und jenes bei NO₂ nahezu verschwindet. Dafür kommt tagsüber großräumige Schadstoffanreicherung stärker zum Tragen, da die hochreichende Inversionen – anders als Bodeninversionen – sich tagsüber nicht auflösen oder abschwächen, was zu höheren NOX-Konzentrationen nachmittags bis abends führt.

30 Die Fesselballonmessungen von KAISER (1987) im Lavanttal zeigten durchwegs relativ hochreichende Bodeninversionen mit einer Vertikalstreckung bis 500 m.
8.14.2 Schwefeldioxid

Die SO₂-Belastung weist im Lavanttal ein relativ heterogenes Muster auf und lässt sich auf drei mögliche Quellen zurückführen.

Ferntransportereignisse aus Slowenien lassen sich an einem ungefähr gleichzeitigen raschen Konzentrationsanstieg an mehreren (aber nicht immer an allen) Messstellen in Ostkärnten erkennen. Sie weisen kein regelmäßiges zeitliches Muster auf. Wie die Schadstoffwindrosen (Kapitel 8.6) zeigen, ist an allen Messstellen von Wolfsberg südärts Transport aus Slowenien die bedeutendste SO₂-Quelle.

Die Messstellen in Frantschach zeigen bei winterlichen Inversionslagen häufig sehr viel höhere SO₂-Konzentrationen als jene am Talboden des Lavanttals, die auch kein gemeinsames zeitliches Muster besitzen. Es kann daraus geschlossen werden, dass das Zellstoffwerk Frantschach zwar eine bedeutende lokale SO₂-Quelle darstellt, die aber Wolfsberg und St. Andrä nur in seltenen Fällen beeinflusst.

SO₂ weist in Wolfsberg und St. Andrä bei kalten winterlichen Wetterlagen, v. a. bei hochreichenden Inversionen, ein ähnliches zeitliches Muster auf wie NO₂, d. h. erhöhte SO₂-Konzentrationen tagsüber. Dieser zeitliche Verlauf könnte auf Emissionen aus Hausbrand zurückzuführen sein.

8.14.3 Schwebestaub

Die TSP-Konzentration zeichnet sich in Wolfsberg und St. Andrä bei Belastungsepisoden (PM10-TMW über 50 µg/m³) durch weniger ausgeprägte tageszeitliche Variationen als NO und NO₂ aus.

An Tagen mit Bodeninversion zeichnen sich bei TSP relativ deutliche Morgen- und Abendspitzen parallel zu erhöhter NO-Konzentration ab.

Dagegen sind bei hochreichenden oder abgehobenen Inversionen keine Morgenspitzen im TSP-Konzentrationsverlauf zu erkennen, sondern erhöhte Konzentrationen nachmittags bis abends parallel zu NO₂ (und an mehreren Tagen parallel zu SO₂). Wie bei NO₂ dürften bei hochreichenden Inversionen tagsüber weniger lokale Emissionen als Schadstoffanreicherung im gesamten Lavanttal die TSP-Belastung bestimmen.

Die TSP-Konzentration zeigt in Wolfsberg und St. Andrä in jenen Fällen, in denen SO₂-Transport aus Slowenien sehr wahrscheinlich ist, nur selten Übereinstimmung.
mit dem SO₂-Konzentrationsverlauf, sodass TSP-Transport aus Slowenien insgesamt vermutlich nur eine geringe Rolle spielt.

8.15 Resümee

Das Lavanttal zeichnet sich durch sehr niedrige Windgeschwindigkeiten (Kalmenhäufigkeit in Wolfsberg 50%, in St. Andrä 75%) aus; die Inversionshäufigkeit zwischen St. Andrä und St. Georgen (110 m Höhendifferenz) liegt im Winter bei 50%.

Während die kontinuierlich gemessenen TSP-Konzentrationen keine nennenswerte Abhängigkeit von der Windrichtung zeigen und bei Kalme etwas höher sind als bei Nord- wie Südwind, ist die gravimetrische PM10-Konzentration an allen Messstellen im Lavanttal bei Südwind höher als bei Nordwind, im Winter (sowie im Jahresmittel) bei Kalme aber noch wesentlich höher als bei Südwind.

Die mittleren Tagesgänge zeigen sowohl bei der NOx- wie bei der TSP-Konzentration in Wolfsberg und St. Andrä ausgeprägte Maxima am Morgen und am Abend, die auf einen dominierenden Einfluss von Straßenverkehrsemissionen schließen lassen. Der relative Beitrag des Straßenverkehrs dürfte in Wolfsberg und St. Andrä noch wesentlich größer als an den beiden Messstellen in Klagenfurt, wo das Abendmaximum sehr viel höher ist als jenes am Morgen und auf einen stärkeren Einfluss von Hausbrandemissionen hinweist.

Die TSP-Konzentration geht im Tages-, Wochen- und Jahresgang weitgehend mit der NOx-Konzentration parallel, auch dies ist ein Hinweis auf einen dominierenden Beitrag des Straßenverkehrs.

Ein Einfluss der SO₂- und TSP-Emissionen des Zellstoffwerkes Frantschach auf die SO₂- und TSP-Belastung in Wolfsberg und St. Andrä lässt sich kaum identifizieren; die SO₂-Konzentration weist an den Messstellen oberhalb von Frantschach zumeist völlig andere zeitliche Muster auf als am Talboden des Lavanttals. Nachdem die Emissionen des Zellstoffwerkes überwiegend aus einem 80 m hohen Schlot stammen, dürften sie gerade bei Belastungsepisoden, die mit sehr stabilen Ausbreitungsbedingungen verbunden sind, kaum den Talboden erreichen.
Statuserhebung PM10 Wolfsberg – Die PM10-Belastung im Lavanttal
9 CHEMISCHE ZUSAMMENSETZUNG DER PM10-FRaktion

9.1 Ausgewählte Tage

Tabelle 34: Tage mit PM10-Inhaltsstoffanalysen

<table>
<thead>
<tr>
<th>Datum</th>
<th>PM10 Wolfsberg [µg/m³]</th>
<th>Wochentag</th>
<th>Meteorologische Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12.04</td>
<td>70</td>
<td>Sonntag</td>
<td>Abgehobene Inversion, nachts Bodeninversion</td>
</tr>
<tr>
<td>13.12.04</td>
<td>63</td>
<td>Montag</td>
<td>Abgehobene Inversion</td>
</tr>
<tr>
<td>14.12.04</td>
<td>74</td>
<td>Dienstag</td>
<td>Abgehobene Inversion</td>
</tr>
<tr>
<td>15.12.04</td>
<td>100</td>
<td>Mittwoch</td>
<td>Abgehobene Inversion</td>
</tr>
<tr>
<td>16.12.04</td>
<td>88</td>
<td>Donnerstag</td>
<td>Abgehobene Inversion, darunter stabil</td>
</tr>
<tr>
<td>17.12.04</td>
<td>117</td>
<td>Freitag</td>
<td>Abgehobene Inversion, darunter stabil</td>
</tr>
<tr>
<td>21.12.04</td>
<td>54</td>
<td>Dienstag</td>
<td>hochreichende Bodeninversion</td>
</tr>
<tr>
<td>22.12.04</td>
<td>64</td>
<td>Mittwoch</td>
<td>hochreichende Bodeninversion</td>
</tr>
<tr>
<td>09.01.05</td>
<td>63</td>
<td>Sonntag</td>
<td>starke hochreichende Bodeninversion</td>
</tr>
<tr>
<td>10.01.05</td>
<td>61</td>
<td>Montag</td>
<td>starke hochreichende Bodeninversion</td>
</tr>
<tr>
<td>11.01.05</td>
<td>60</td>
<td>Dienstag</td>
<td>starke hochreichende Bodeninversion</td>
</tr>
</tbody>
</table>

9.2 Ergebnisse der chemischen Analysen

Organisches Material (OM) wurde mit einem Faktor 1,4 aus dem organischen Kohlenstoff (OC) berechnet, der Anteil des Wassers mit 40% am Ammoniumsulfat abgeschätzt [SEINFELD&PANDIS, 1998]. Die Alkali- und Erdalkalielemente umfassen lösliches Na, K, Ca und Mg. Der „Rest“ wird als Differenz der

analysierten Komponenten (inkl. des über Sulfat abgeschätzten Wasseranteils) gegenüber der Gesamt-PM10-Konzentration angegeben. Tabelle 35 gibt auch die Mittelwerte der Konzentrationen der Inhaltsstoffe für Tage mit überwiegend abgehobener Inversion sowie mit Bodeninversion (s.u.) an.

Tabelle 35: Ergebnisse der chemischen Analysen von PM10-Inhaltsstoffen in Wolfsberg, µg/m³

<table>
<thead>
<tr>
<th>Datum</th>
<th>PM10</th>
<th>EC</th>
<th>OM</th>
<th>Sulfat</th>
<th>Nitrat</th>
<th>Ammonium</th>
<th>Chlorid</th>
<th>Alkali-, Erdalkali-</th>
<th>Wasser</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12.2004</td>
<td>69,6</td>
<td>11,7</td>
<td>21,6</td>
<td>5,9</td>
<td>5,4</td>
<td>2,5</td>
<td>0,5</td>
<td>2,7</td>
<td>2,8</td>
<td>16,5</td>
</tr>
<tr>
<td>13.12.2004</td>
<td>63,2</td>
<td>7,3</td>
<td>18,1</td>
<td>8,2</td>
<td>5,2</td>
<td>3,5</td>
<td>0,3</td>
<td>2,2</td>
<td>3,9</td>
<td>14,5</td>
</tr>
<tr>
<td>14.12.2004</td>
<td>74,2</td>
<td>7,7</td>
<td>21,7</td>
<td>8,4</td>
<td>5,4</td>
<td>3,4</td>
<td>0,5</td>
<td>2,7</td>
<td>4,0</td>
<td>20,4</td>
</tr>
<tr>
<td>15.12.2004</td>
<td>100,1</td>
<td>8,4</td>
<td>24,6</td>
<td>16,8</td>
<td>6,9</td>
<td>6,9</td>
<td>0,9</td>
<td>3,3</td>
<td>8,1</td>
<td>24,2</td>
</tr>
<tr>
<td>16.12.2004</td>
<td>88,1</td>
<td>9,4</td>
<td>20,7</td>
<td>13,4</td>
<td>6,7</td>
<td>5,5</td>
<td>0,8</td>
<td>3,3</td>
<td>6,4</td>
<td>21,9</td>
</tr>
<tr>
<td>17.12.2004</td>
<td>116,6</td>
<td>11,4</td>
<td>31,1</td>
<td>18,0</td>
<td>8,7</td>
<td>9,4</td>
<td>1,3</td>
<td>4,4</td>
<td>8,6</td>
<td>23,8</td>
</tr>
<tr>
<td>21.12.2004</td>
<td>53,8</td>
<td>8,1</td>
<td>16,2</td>
<td>2,4</td>
<td>2,3</td>
<td>0,3</td>
<td>2,0</td>
<td>3,2</td>
<td>1,2</td>
<td>18,0</td>
</tr>
<tr>
<td>22.12.2004</td>
<td>64,1</td>
<td>10,4</td>
<td>23,1</td>
<td>2,9</td>
<td>3,5</td>
<td>0,6</td>
<td>2,4</td>
<td>4,2</td>
<td>1,4</td>
<td>15,6</td>
</tr>
<tr>
<td>09.01.2005</td>
<td>63,1</td>
<td>9,5</td>
<td>25,2</td>
<td>3,1</td>
<td>3,8</td>
<td>1,3</td>
<td>1,9</td>
<td>3,1</td>
<td>1,5</td>
<td>13,8</td>
</tr>
<tr>
<td>10.01.2005</td>
<td>60,6</td>
<td>11,4</td>
<td>19,9</td>
<td>3,1</td>
<td>3,8</td>
<td>1,1</td>
<td>1,2</td>
<td>2,9</td>
<td>1,5</td>
<td>15,8</td>
</tr>
<tr>
<td>11.01.2005</td>
<td>60,0</td>
<td>10,9</td>
<td>25,5</td>
<td>3,0</td>
<td>3,1</td>
<td>0,9</td>
<td>1,1</td>
<td>2,7</td>
<td>1,4</td>
<td>11,4</td>
</tr>
<tr>
<td>Mittel</td>
<td>73,9</td>
<td>9,7</td>
<td>22,5</td>
<td>7,7</td>
<td>5,0</td>
<td>3,2</td>
<td>1,2</td>
<td>3,2</td>
<td>3,7</td>
<td>17,8</td>
</tr>
<tr>
<td>Boden-</td>
<td>61,9</td>
<td>10,3</td>
<td>21,9</td>
<td>3,4</td>
<td>3,6</td>
<td>1,1</td>
<td>1,5</td>
<td>3,1</td>
<td>1,6</td>
<td>15,2</td>
</tr>
<tr>
<td>inversion</td>
<td></td>
</tr>
<tr>
<td>abgehobene</td>
<td>88,4</td>
<td>8,8</td>
<td>23,2</td>
<td>12,9</td>
<td>6,6</td>
<td>5,7</td>
<td>0,7</td>
<td>3,2</td>
<td>6,2</td>
<td>21,0</td>
</tr>
</tbody>
</table>

“Holzrauch” aus Levoglucosan bestimmt

Abbildung 49: Ergebnisse der chemischen Analysen von PM10-Inhaltsstoffen in Wolfsberg, gruppiert in Tage mit Bodeninversion und abgehobener Inversion

Abbildung 50: Ergebnisse der chemischen Analysen von PM10-Inhaltsstoffen in Wolfsberg, Anteile in Prozent
Statuserhebung PM10 Wolfsberg – Chemische Zusammensetzung der PM10-Fraktion

Tabelle 36: Ergebnisse der chemischen Analysen von organischen Tracern, in µg/m³

<table>
<thead>
<tr>
<th></th>
<th>Zellulose</th>
<th>Pflanzenmaterial</th>
<th>Levo-glucosan</th>
<th>Holzrauch (Einzelöfen)</th>
<th>HULIS-C</th>
<th>HULIS</th>
<th>OM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12.2004</td>
<td>0,1</td>
<td>0,2</td>
<td>1,6</td>
<td>17,0</td>
<td>1,9</td>
<td>3,9</td>
<td>21,6</td>
</tr>
<tr>
<td>13.12.2004</td>
<td>0,1</td>
<td>0,2</td>
<td>1,1</td>
<td>11,1</td>
<td>1,4</td>
<td>2,8</td>
<td>18,1</td>
</tr>
<tr>
<td>14.12.2004</td>
<td>0,1</td>
<td>0,3</td>
<td>1,2</td>
<td>12,1</td>
<td>1,4</td>
<td>2,8</td>
<td>21,7</td>
</tr>
<tr>
<td>15.12.2004</td>
<td>0,2</td>
<td>0,3</td>
<td>1,1</td>
<td>11,7</td>
<td>3,2</td>
<td>6,4</td>
<td>24,6</td>
</tr>
<tr>
<td>16.12.2004</td>
<td>0,2</td>
<td>0,3</td>
<td>1,1</td>
<td>10,8</td>
<td>1,7</td>
<td>3,4</td>
<td>20,7</td>
</tr>
<tr>
<td>17.12.2004</td>
<td>0,1</td>
<td>0,2</td>
<td>1,6</td>
<td>16,1</td>
<td>2,3</td>
<td>4,6</td>
<td>31,1</td>
</tr>
<tr>
<td>21.12.2004</td>
<td>0,2</td>
<td>0,3</td>
<td>1,2</td>
<td>12,2</td>
<td>0,7</td>
<td>1,3</td>
<td>16,2</td>
</tr>
<tr>
<td>22.12.2004</td>
<td>0,2</td>
<td>0,3</td>
<td>1,6</td>
<td>16,5</td>
<td>1,5</td>
<td>3,1</td>
<td>23,1</td>
</tr>
<tr>
<td>09.01.2005</td>
<td>0,1</td>
<td>0,3</td>
<td>1,7</td>
<td>17,7</td>
<td>1,7</td>
<td>3,4</td>
<td>25,2</td>
</tr>
<tr>
<td>10.01.2005</td>
<td>0,2</td>
<td>0,4</td>
<td>1,5</td>
<td>15,5</td>
<td>1,0</td>
<td>1,9</td>
<td>19,9</td>
</tr>
<tr>
<td>11.01.2005</td>
<td>0,2</td>
<td>0,4</td>
<td>1,6</td>
<td>16,1</td>
<td>0,9</td>
<td>1,8</td>
<td>25,5</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0,2</td>
<td>0,3</td>
<td>1,4</td>
<td>14,3</td>
<td>1,6</td>
<td>3,2</td>
<td>22,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Boden-inversion</th>
<th>abgehobene Inversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellulose</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>Pflanzenmaterial</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Levo-glucosan</td>
<td>1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>Holzrauch (Einzelöfen)</td>
<td>15,8</td>
<td>12,3</td>
</tr>
<tr>
<td>HULIS-C</td>
<td>1,3</td>
<td>2,0</td>
</tr>
<tr>
<td>HULIS</td>
<td>2,5</td>
<td>4,0</td>
</tr>
<tr>
<td>OM</td>
<td>21,9</td>
<td>23,2</td>
</tr>
</tbody>
</table>

9.3 Diskussion der einzelnen Tage

9.3.1 Wetterlage

10. bis 25.12.2004

Wehte am 10. und 11.12. in Wolfsberg überwiegend Nordwind bis 1 m/s, stellte sich ab 12.12. sehr schwacher, unbeständiger, eher südlicher Wind ein (Abbildung 51). Der Frontdurchgang am 18.12. brachte kurzzeitig einen Anstieg der Windgeschwindigkeit bis 3 m/s (Nordost- bis Nordwest).

Bei noch mäßig starkem Wind bildete sich am 19.12. eine Bodeninversion. Ab dem 20.12. war es in Kärnten relativ sonnig, was hohe Temperaturamplituden zur Folge hatte sowie die Ausbildung von Bodeninversionen in der Nacht, als die Temperatur am Talboden bis −10°C sank; nachmittags erreichte die Temperatur am 20.12. +4°C, ab 21.12. −1°C. Bis zum 20.12. vormittags wehte in Wolfsberg noch Nordwind bis 2 m/s, danach überwiegend südlicher Wind um 0,5 m/s.

7. bis 15.1. 2005

Am Talboden des Lavanttals wehte ab 6.1. sehr schwacher südlicher Wind, in St. Georgen fast durchwegs Nordwestwind um 2 m/s.

9.3.2 Immission

10. bis 25.12.2004

Die TSP-Belastung wies von 10. bis 15.12. einen ziemlich strukturlosen Verlauf mit etwas erhöhten Werten am Abend auf. Auch bei NO und noch deutlicher bei NO₂ waren die Abendmaxima wesentlich ausgeprägter als jene morgens, wie dies bei abgehobenen Inversionen meist der Fall ist.

Mit der Ausbildung einer Inversion unterhalb des Magdalensberges (d. h. einer flacheren Inversionssicht als zuvor bis zur Gerlitzen) stieg am 17.12. die PM10-ebenso wie die NOx-Belastung. Die Konzentration war tagsüber höher als nachts, wies aber keine sonderlich markanten Morgen- oder Abendspitzen auf.

Am Nachmittag des 18.12. ging die TSP-Belastung im ganzen Lavanttal unter 20 µg/m³ zurück, als die Windgeschwindigkeit über 3 m/s stieg und die verschmutzte Luft „ausgeräumt“ wurde.

Am 26.12. ging die TSP- ebenso wie die NOx- und SO₂-Konzentration bei günstigeren Ausbreitungsbedingungen zurück. Die NO-Konzentration stieg am 27.12., nach den Weihnachtsfeiertagen, wieder deutlich an, nicht aber TSP.

![Abbildung 53: TSP, NOx und SO2-Belastung an der Messstelle Wolfsberg, 10.12. bis 25.12.2004](image)
7. bis 15.1. 2005

Die NO-Konzentration wies im Lavanttal markante Tagesgänge mit Morgen- und Abendspitzen bis 300 µg/m³ auf, entsprechend den sehr ungünstigen Ausbreitungsbedingungen. Bei NO₂ waren die Abendmaxima wesentlich ausgeprägter; TSP zeigte relativ strukturlöse Tagesgänge mit erhöhten Konzentrationen tagsüber und bis in die Nacht hinein, die höchsten Konzentrationen wurden abends registriert.

Abbildung 54: TSP, NOx und SO₂-Belastung an der Messstelle Wolfsberg, 7.1. bis 15.1.2005

9.3.3 Chemische Analysen

Die chemischen Analysen lassen deutliche Unterschiede der PM10-Zusammensetzung in Abhängigkeit der Temperaturschichtung über dem Lavanttal erkennen.

Abhängigkeit von Temperaturschichtung

hohe Ruß-Anteile

Statuserhebung PM10 Wolfsberg – Chemische Zusammensetzung der PM10-Fraktion

Die Rest-Anteile variieren insgesamt zwischen 19 und 33% und zeigen keinen deutlichen Zusammenhang mit der Temperaturschichtung.

Die von der TU Wien analysierte organische Komponente Levoglucosan stellt einen Tracer für Partikel aus Holzverbrennung dar. Die Levoglucosan-Konzentrationen werden mit einem Faktor 7,35 [FINE et al., 2002] in „Holzrauch-Äquivalente“ von OC umgerechnet, mit einem Faktor 1,4 in OM. Der „Holzrauch“-Anteil (bezogen auf OM) variiert zwischen 10,8 und 17,7 µg/m³ bzw. 12 und 28% an der PM10-Konzentration. Tage mit Bodeninversion weisen dabei mit einem mittleren Holzrauch-Anteil von 15,8 µg/m³ bzw. 26% einen größeren Holzrauch-Beitrag auf als Tage mit abgehobener Inversion, an denen der Holzrauch-Anteil im Mittel 12,3 µg/m³ bzw. 14% ausmacht. Im Mittel beträgt der Holzrauch-Anteil am PM10 20%. Der relative Holzrauch-Anteil am OM beträgt bei Bodeninversion 73%, bei abgehobener Inversion 54%.

Der Holzrauch-Beitrag zeigt keinen Zusammenhang mit der Temperatur in Wolfsberg. Die Tage im Dezember 2004 mit Tagesmitteltemperaturen zwischen -6 und -3°C wiesen im Mittel niedrigere Holzrauch-Beiträge aus als die Tage im Jänner mit Tagesmitteltemperaturen um 0°C. Die Tage im Jänner waren von massiven Bodeninversionen gekennzeichnet; im Mittel wiesen die Tage mit Bodeninversion um ca. 4 µg/m³ höhere Holzrauch-Beiträge auf als solche mit abgehobener Inversion, was auf einen dominierenden Beitrag niedriger gelegener Holzrauch-Quellen hinweist, deren Emissionen sich bei Bodeninversionen stärker anreichern als bei abgehobenen Inversionen.

Der Anteil an Pflanzenmaterial (berechnet aus dem Zellulose-Gehalt) beträgt maximal 0,7%, dieser spielt daher an den analysierten Tagen so gut wie keine Rolle.

Der Gehalt an HULIS beträgt 1,3 bis 6,4 µg/m³, im Mittel ist er an Tagen mit abgehobener Inversion geringfügig höher als an Tagen mit Bodeninversion. Dies könnte damit zusammenhängen, dass die Bildung sekundärer organischer Aerosole in einem größeren Luftvolumen, das bei abgehobenen Inversionen für Schadstoffanreicherung über dem Lavanttal zur Verfügung steht, stärker zum Tragen kommt.

Zu den überraschenden Ergebnissen der Inhaltsstoffanalysen gehört die sehr niedrige Konzentration an Natrium bzw. Natriumsulfat. Einen möglichen Hinweis auf primäre PM10-Emissionen aus Frantschach könnte Natriumsulfat (Na₂SO₄) darstellen, welches aus den Laugenkesseln emittiert wird (Kapitel 5.1.1). Die Natrium-Konzentrationen sind aber gerade an den Tagen mit erhöhter Sulfat-Belastung – d. h. den Tagen mit abgehobener Inversion – mit um 1 µg/m³ niedrig. Die höchsten Na-Anteile wurden am 21. und 22.12. sowie am 9.1. gemessen (1,4 bis 1,7 µg/m³), die sich durch Bodeninversionen und niedrige Sulfat-Anteile auszeichnen; diese erhöhten Na-Anteile korrelieren mit erhöhten Cl-Anteilen (1,9

33 Levoglucosan stammt vor allem aus veralteten Einzelöfen durch unvollständige Verbrennungsvorgänge, jedoch kaum aus modernen Biomasseanlagen oder –Öfen.
Statuserhebung PM10 Wolfsberg – Chemische Zusammensetzung der PM10-Fraktion

bis 2,4 µg/m³), sodass erhöhte Na-Konzentrationen in Wolfsberg vermutlich eher Streusalzeinsatz zuzuordnen sind, nachdem am 18.12. gestreut wurde. Die Cl-Konzentration lag bis zum 17.12. um 1% und stieg am 21. und 22.12. auf 4%, der Na-Anteil von 1 auf 3%[34].

Die Konzentration von Kalium ist an Tagen mit abgehobener Inversion im Mittel geringfügig höher als an Tagen mit Bodeninversion. Bei Calcium und Magnesium sind keine Unterschiede festzustellen.

9.4 Resümee

Die mittlere PM10-Konzentration an den Tagen mit Bodeninversion betrug 62 µg/m³, an Tagen mit abgehobener Inversion 88 µg/m³. Der Unterschied von 26 µg/m³ – sofern er verallgemeinerbar ist – besteht zum Großteil aus sekundären anorganischen Ionen; die mittlere Konzentration von Sulfat beträgt bei Bodeninversion 3 µg/m³, bei abgehobenen Inversionen 12 µg/m³, von Nitrat 4 bzw. 7 µg/m³, von Ammonium 1 bzw. 6 µg/m³. Der Rest-Anteil ist bei abgehobenen Inversionen im Mittel um 6 µg/m³ höher als bei Bodeninversionen.

Bei Bodeninversionen überwiegt die kohlenstoffhaltige Fraktion (EC, OM) deutlich (im Mittel über den 12.12. sowie die Analysen vom 21.12. bis 11.1. 52%), während sie bei abgehobenen Inversionen nur bei 37% liegt. Umgekehrt machen bei Bodeninversionen sekundäre anorganische Aerosole (Sulfat, Nitrat, Ammonium inkl. Wasser) 16% aus, bei abgehobenen Inversionen mit 35% mehr als doppelt so viel.

Betrachtet man die Absolutkonzentrationen der Inhaltsstoffe, so sind die Konzentrationen an EC und OM im Mittel an Tagen mit Bodeninversionen und mit abgehobenen Inversionen sehr ähnlich (EC 10 bzw. 9 µg/m³, OM 22 bzw. 23 µg/m³), die Differenz besteht überwiegend aus sekundären anorganischen Ionen.

Tage mit Bodeninversion weisen mit einem (mittels Levoclucosan abgeschätzten) mittleren Holzrauch-Anteil (OM) von 16 µg/m³ bzw. 26% einen etwas größeren Holzrauch-Beitrag auf als Tage mit abgehobener Inversion, an denen der Holzrauch-Anteil im Mittel 12 µg/m³ bzw. 14% ausmacht. Der relative Holzrauch-Anteil am OM beträgt bei Bodeninversion 73%, bei abgehobener Inversion 54%.

[34] Würde man – im Zuge einer Maximalabschätzung, davon ausgehen, dass das von 12. bis 17.12. (bei abgehobener Inversion und erhöhter Sulfat-Konzentration) analysierte Natrium vollständig in Form von Natriumsulfat vorliegt, würde dies bei Na-Konzentrationen zwischen 0,6 und 1,3 µg/m³ Na₂SO₄-Konzentrationen von lediglich 2 bis 4 µg/m³ ergeben, d. h. unter 5% der gesamten PM10-Konzentration.
Daraus kann geschlossen werden, dass bei abgehobenen Inversionen neben Holzverbrennung in stärkerem Ausmaß zusätzliche OM-Quellen wirksam sind (möglicherweise sekundäre organische Partikel, wie die HULIS-Analysen andeuten).

Bei Bodeninversionen tragen Emissionen am Talboden, kaum aber jene aus größeren Höhen zur PM10-Belastung bei. Der höhere Anteil sekundärer anorganischer Aerosole, und zwar sowohl Sulfat wie Nitrat, bei abgehobenen Inversionen ist ein Hinweis, dass die relevanten SO\textsubscript{2} und NOx-Emissionen in größerer Höhe zu lokalisieren sind (z. B. Frantschach).

Sofern die vorliegenden elf Tage repräsentativ sind, kann daraus geschlossen werden, dass bei Bodeninversionen und bei abgehobenen Inversionen Quellen am Talboden wirksam sind, bei abgehobenen Inversionen zusätzlich höher gelegene Quellen, die vorwiegend zur Belastung mit sekundären anorganischen Aerosolen beitragen.

9.5 Österreichweiter Vergleich

In Hinblick auf die unterschiedlichen Probenahmedauern, die damit auch unterschiedliche Belastungssituationen umfassen, wird eine Einordnung der PM10-Zusammensetzung in Wolfsberg erschwert.

An Tagen mit Bodeninversion ähnelt das Belastungsmuster in Wolfsberg städtischen inneralpinen Standorten bzw. Standorten in Beckenlagen (Klagenfurt, Lienz, Innsbruck, Graz) mit hohen Anteilen der kohlenstoffhaltigen Fraktion und rel. niedrigen Anteilen von Nitrat und Ammonium. Der EC-Anteil ist in Wolfsberg niedriger als an der stark verkehrsbelasteten Messstelle Lienz Amlacherkreuzung und ähnlich hoch wie in Klagenfurt oder Innsbruck.

An Tagen mit abgehobenen Inversionen weist Wolfsberg ähnliche Anteile an Sulfat auf, wie sie im Großteil des außerpalinen Österreich, auch in Großstädten, auftreten, während der Nitrat-Anteil geringer ist.

Levoglucosan-Werte stehen neben Wolfsberg von einer Messkampagne an den Wiener Messstellen Schafbergbad und Liesing zur Verfügung. An der Messstelle Schafbergbad beträgt der aus Levoglucosan errechnete Holzrauch-Anteil im Mittel im Winter 9% von PM10 bzw. 50% von OM, in Liesing 8% bzw. 40%. In Wolfsberg beträgt der Holzrauch-Anteil an PM10 etwa 15%, der Anteil an OM beträgt 46%. Verglichen mit Wien sind die Anteile an Holzrauch an PM10 in Wolfsberg daher beinahe doppelt so hoch.

<table>
<thead>
<tr>
<th>Ort</th>
<th>Datum</th>
<th>PM10</th>
<th>EC</th>
<th>OM</th>
<th>Sulfat</th>
<th>Nitrat</th>
<th>Ammonium</th>
<th>Metalle</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolfsberg Dez.04/Jän.05</td>
<td>74</td>
<td>14%</td>
<td>31%</td>
<td>9%</td>
<td>7%</td>
<td>4%</td>
<td>4%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>Wolfsberg Bodeninv.</td>
<td>60</td>
<td>17%</td>
<td>36%</td>
<td>5%</td>
<td>5%</td>
<td>1%</td>
<td>5%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Wolfsberg abgehobene Inv.</td>
<td>85</td>
<td>11%</td>
<td>27%</td>
<td>13%</td>
<td>8%</td>
<td>6%</td>
<td>4%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>Klagengurt Völk.</td>
<td>Dez 02/Jän.03</td>
<td>64</td>
<td>17%</td>
<td>29%</td>
<td>8%</td>
<td>9%</td>
<td>5%</td>
<td>4%</td>
<td>21%</td>
</tr>
<tr>
<td>Lienz</td>
<td>Dez. 02</td>
<td>49</td>
<td>25%</td>
<td>34%</td>
<td>6%</td>
<td>6%</td>
<td>2%</td>
<td>4%</td>
<td>21%</td>
</tr>
<tr>
<td>Innsbruck Zentrum</td>
<td>Sept.03/Nov.03</td>
<td>26</td>
<td>20%</td>
<td>32%</td>
<td>8%</td>
<td>5%</td>
<td>3%</td>
<td>5%</td>
<td>23%</td>
</tr>
<tr>
<td>Lienz</td>
<td>Juni 00 – Mai 01</td>
<td>34</td>
<td>11%</td>
<td>16%</td>
<td>15%</td>
<td>11%</td>
<td>7%</td>
<td>3%</td>
<td>27%</td>
</tr>
<tr>
<td>Graz Süd</td>
<td>Juni 00 – Mai 01</td>
<td>33</td>
<td>14%</td>
<td>24%</td>
<td>13%</td>
<td>7%</td>
<td>5%</td>
<td>3%</td>
<td>28%</td>
</tr>
<tr>
<td>Arnoldstein</td>
<td>März 99 – Feb. 00</td>
<td>22</td>
<td>6%</td>
<td>31%</td>
<td>18%</td>
<td>8%</td>
<td>8%</td>
<td>3%</td>
<td>26%</td>
</tr>
<tr>
<td>Unterloibach</td>
<td>März 99 – Febr. 00</td>
<td>20</td>
<td>5%</td>
<td>27%</td>
<td>18%</td>
<td>9%</td>
<td>10%</td>
<td>2%</td>
<td>28%</td>
</tr>
<tr>
<td>AKH</td>
<td>Juni 99 – Mai 00</td>
<td>30,4</td>
<td>12%</td>
<td>26%</td>
<td>15%</td>
<td>13%</td>
<td>8%</td>
<td>5%</td>
<td>19%</td>
</tr>
<tr>
<td>Spittauer Lände</td>
<td>Okt. 99 – Nov. 00</td>
<td>53,4</td>
<td>20%</td>
<td>20%</td>
<td>9%</td>
<td>8%</td>
<td>4%</td>
<td>9%</td>
<td>32%</td>
</tr>
<tr>
<td>Liesing</td>
<td>Nov. 01 – Okt. 02</td>
<td>49,7</td>
<td>10%</td>
<td>24%</td>
<td>12%</td>
<td>11%</td>
<td>7%</td>
<td>8%</td>
<td>28%</td>
</tr>
<tr>
<td>Schaftbergbad</td>
<td>Nov. 01 – Okt. 02</td>
<td>35,7</td>
<td>10%</td>
<td>23%</td>
<td>17%</td>
<td>14%</td>
<td>10%</td>
<td>4%</td>
<td>21%</td>
</tr>
<tr>
<td>Illmitz</td>
<td>Okt. 99 – Nov. 00</td>
<td>24,2</td>
<td>8%</td>
<td>23%</td>
<td>18%</td>
<td>11%</td>
<td>8%</td>
<td>4%</td>
<td>28%</td>
</tr>
<tr>
<td>Streithofen</td>
<td>Juni 99 – Mai 00</td>
<td>23,7</td>
<td>8%</td>
<td>25%</td>
<td>16%</td>
<td>17%</td>
<td>11%</td>
<td>3%</td>
<td>18%</td>
</tr>
<tr>
<td>Belgradplatz</td>
<td>Feb./März 03, Jän./Feb. 04</td>
<td>92,6</td>
<td>9%</td>
<td>20%</td>
<td>16%</td>
<td>17%</td>
<td>8%</td>
<td>4%</td>
<td>27%</td>
</tr>
<tr>
<td>Gaudenzdorf</td>
<td>Feb./März 03</td>
<td>96,2</td>
<td>9%</td>
<td>20%</td>
<td>18%</td>
<td>16%</td>
<td>9%</td>
<td>3%</td>
<td>24%</td>
</tr>
<tr>
<td>Rinnböckstraße</td>
<td>Feb./März 03</td>
<td>129,4</td>
<td>10%</td>
<td>18%</td>
<td>16%</td>
<td>14%</td>
<td>7%</td>
<td>4%</td>
<td>30%</td>
</tr>
<tr>
<td>Stadlau</td>
<td>Feb./März 03</td>
<td>113,0</td>
<td>9%</td>
<td>22%</td>
<td>21%</td>
<td>16%</td>
<td>10%</td>
<td>3%</td>
<td>19%</td>
</tr>
</tbody>
</table>

9.6 Interpretation

Einer zusammenfassenden Bewertung der PM10-Inhaltsstoffanalysen in Wolfsberg muss die Einschränkung vorangestellt werden, dass die vorliegenden elf Tage nicht

35 Die Daten wurden dankenswerter Weise von Dr. Heidi Bauer, TU-Wien, zur Verfügung gestellt.
notwendigerweise auf andere Situationen verallgemeinerbar sind. Insbesondere ist nicht gesichert, ob die im vorliegenden Datensatz relativ klar erkennbaren Unterschiede zwischen Tagen mit Bodeninversionen und solchen mit abgehobenen Inversionen auch für andere Situationen mit vergleichbaren meteorologischen Bedingungen direkt repräsentativ sind.

Die PM10-Analysen von Wolfsberg zeigen im Mittel im österreichweiten Vergleich außerordentlich hohe Anteile an EC und OM und niedrige Anteile sekundärer anorganischer Aerosole.

Dabei lassen sich deutliche Unterschiede zwischen Tagen mit Bodeninversion und Tagen mit abgehobener Inversion erkennen; letztere weisen (im Mittel über die elf Tage mit chemischen Analysen) eine um 26 µg/m³ höhere PM10-Konzentration auf. Der „Zusatzbeitrag“ an Tagen mit abgehobener Inversion (Mittel 88 µg/m³) gegenüber Tagen mit Bodeninversion (Mittel 62 µg/m³) besteht aus zum Großteil aus Sulfat, daneben aus Nitrat, Ammonium und „Rest“.

Die Absolutkonzentrationen von EC und OM zeigen im Mittel keine Abhängigkeit von der Temperaturstratifikation. Der mittels Levoclucosan („Holzrauch“) abgeschätzte Anteil von Holzverbrennung am OM ist an Tagen mit Bodeninversion höher, sodass an Tagen mit abgehobener Inversion vermutlich zusätzliche OM-Quellen zum Tragen kommen.

Daraus kann geschlossen werden, dass Quellen von EC und „Holzrauch“ bei Bodeninversionen und abgehobenen Inversionen in ähnlichem Ausmaß wirksam sind, Quellen sekundärer anorganischer Aerosole (sowie in geringeren Mengen „Rest“ und OM ohne Holzverbrennung) aber bei abgehobenen Inversionen in wesentlich stärkerem Ausmaß. An den vorliegenden Tagen mit Analysen ist die Konzentration von Sulfat, Nitrat und Ammonium in Summe an Tagen mit abgehobener Inversion mehr als dreimal so hoch wie an Tagen mit Bodeninversion.

Natrium und Chlor – die im Mittel 2 µg/m³ beitragen, maximal 4 µg/m³ – dürften überwiegend aus Salzstreuung stammen. Die Analysenergebnisse geben kaum Hinweise auf einen Beitrag primärer Emissionen von Natriumsulfat in Frantschach.

Die Tatsache, dass sekundäre anorganische Ionen, v. a. Sulfat, bei abgehobenen Inversionen in sehr viel höherer Konzentration vorliegen als bei Bodeninversionen, lässt sich dahingehend interpretieren, dass bei abgehobenen Inversionen zusätzliche Quellen von SO₂ (und u. U. auch NOx und NH₃) zum Tragen kommen, die bei Bodeninversion nicht wirksam sind. Als derartige starke SO₂-Quellen kommen einmal die Zellstoffwerk Mondi Packaging in Frantschach, zum anderen das Kohlekraftwerk Šoštanj in Slowenien in Frage. Gleichzeitig geben die Analysen keinen Hinweis auf einen nennenswerten Beitrag der primären PM₁₀-Emissionen aus Frantschach, die überwiegend als Natriumsulfat vorliegen (sollten).

Das zeitliche und räumliche Belastungsbild bei TSP und SO₂ gibt an den untersuchten Tagen keinen Hinweis auf Transport aus Slowenien. In Wolfsberg war die SO₂-Konzentration durchwegs höher als an den südlicher gelegenen Messstellen St. Georgen, Soboth und Bleiburg (die eher von SO₂-Transport aus...
Slowenien erfasst werden als Wolfsberg), was ebenso gegen Transport aus Šoštanj spricht wie der sehr strukturlose Konzentrationsverlauf in der Periode von 12. bis 17.12. (d. h. während einer Situation mit abgehobener Inversion); zudem wehte im Lavanttal, auch in St. Georgen zumeist Nord- bis Nordwestwind.

Insgesamt gibt das Belastungsbild bei SO\textsubscript{2} keinen deutlichen Hinweis auf einen Einfluss erhöht gelegener SO\textsubscript{2}-Quellen (wie dies in Klagenfurt sehr deutlich zu erkennen ist – wobei in Klagenfurt an den untersuchten Tagen wesentlich höhere SO\textsubscript{2}-Konzentrationen auftraten als im Lavanttal); die SO\textsubscript{2}-Belastung in Wolfsberg (die mit 10 bis 15 µg/m3 absolut gesehen nicht sehr hoch war) dürfte überwiegend auf bodennahe, lokale Emissionen zurückgehen.

Soweit aus den (relativ strukturlosen) Konzentrationsverläufen von SO\textsubscript{2} und TSP an Tagen mit abgehobener Inversion auf das Verhalten von (Ammonium)Sulfat geschlossen werden kann, dürfte die erhöhte Sulfat-Konzentration nicht auf Einmischungsprozesse zurückgehen (wie in Klagenfurt), sondern eher auf langzeitige (und großflächige) Anreicherung.

Damit lässt sich Transport von PM10 (einschließlich Sulfat) aus Slowenien weitgehend ausschließen, sodass die erhöhten Sulfat-Konzentrationen in Wolfsberg bei abgehobenen Inversionen primär Emissionen in Frantschach zuzuordnen sind. Dies wirft allerdings die Frage auf, weswegen die erheblichen Natriumsulfat-Emissionen (primäre PM10-Emissionen) aus Frantschach in Wolfsberg nicht beobachtet werden. Dafür ließen sich folgende mögliche Interpretationen geben:

- Die Emissionsangaben weichen deutlich von den tatsächlichen Emissionen (zumindest während der untersuchten Tage) ab
- Das emittierte Natriumsulfat wird bereits im Nahbereich des Emittenten ausgewaschen und erreicht Wolfsberg nicht 37

10 FAKTOREN, DIE ZU DEN GRENZWERTÜBERSCHREITUNGEN GEFÜHRT HABEN

10.1 Räumliche Herkunftszuordnung der PM10-Belastung

Die im folgenden Kapitel diskutierte Herkunftszuordnung bezieht sich grundsätzlich auf die PM10-Belastung in Wolfsberg an Tagen mit Tagesmittelwerten über 50 µg/m³.

10.1.1 Möglicher (Fern-)Transport von PM10 aus Slowenien

Im diesem Kapitel wird zunächst – aufbauend auf die Auswertungen in Kapitel 8.13 und 8.14 – das Ausmaß von möglichem Schadstofftransport aus Slowenien ins Lavanttal und dessen Beitrag zur PM10-Belastung in Wolfsberg diskutiert.

Ein möglicher Beitrag dieser Kraftwerke zur PM10-Belastung in Wolfsberg kann einerseits aus primären PM10-Emissionen resultieren, zum anderen aus der Bildung von Sulfat zufolge der SO₂-Emissionen.

Kraftwerke in Šoštanj und Trobvlje

Emissionen stark reduziert

hohe Belastung bei fehlendem Luftmassenaustausch
starken Inversionen auf, bei denen ein Überströmen der das Lavanttal umgebenden Gebirge sowie der Gebirge zwischen dem Pakatai, in dem sich das Kraftwerk Šoštanj befindet, und dem Einzugsgebiet der Drau, zu dem das Lavanttal gehört, weitgehend auszuschließen ist.

Zudem zeigt sich keinerlei statistischer Zusammenhang zwischen der SO\textsubscript{2}-Belastung an den Südostkärntner Messstellen und der PM10- oder TSP-Belastung im Lavanttal.

In Kapitel 8.13 wird für einzelne Episoden gezeigt, dass erhöhte SO\textsubscript{2}-Konzentrationen an erhöht gelegenen Messstellen in Südostkärnten - die mit hoher Wahrscheinlichkeit auf Transport aus Slowenien zurückgehen - eher mit labiler Temperaturschichtung zusammen fallen.

Die ab Oktober 2004 in Lavamünd durchgeführten PM10-Messungen geben ebenfalls keinerlei Hinweis auf PM10-Transport aus Slowenien in Bodennähe, sondern spiegeln eine ländliche Hintergrundbelastung ähnlich jener in Gurtshitschach wider, deren Quellen vor allem im Lavanttal bzw. im Klagenfurter Becken selbst liegen.

Die erhöhte Konzentration sekundärer anorganischer Aerosole in Wolfsberg (siehe Kapitel 9.3) an Tagen mit abgehobener Inversion dürfte kaum auf Transport aus Slowenien zurückzuführen sein. Während jener Episode im Dezember 2004, an der PM10-Inhaltsstoffe analysiert wurden und besonders hohe Beiträge von Sulfat festgestellt wurden, wehte in Lavamünd durchgängig Nordwestwind, was deutlich gegen Transport aus Slowenien spricht.

Damit lassen sich folgende Schlussfolgerungen ziehen:

1. Sulfat-Transport aus Slowenien oder Sulfat-Bildung im Lavanttal aufgrund von SO\textsubscript{2}-Transport aus Slowenien spielten mit sehr hoher Wahrscheinlichkeit an jenen Tagen im Dezember 2004, für die die chemischen Analysen stark erhöhte Sulfat-Konzentrationen ausweisen (die auffällig mit abgehobenen Inversionen zusammen fallen) keine Rolle.

2. jene (wenigen) Fälle mit TSP-Spitzen parallel zu SO\textsubscript{2}-Spitzen, welche auf Transport aus Slowenien zurückgehen dürften, fallen für den TMW wenig ins Gewicht, da sie nur wenige Stunden andauern, sodass der Beitrag von TSP-Transport aus Slowenien als gering eingestuft wird.

Die PM10-Belastung in Wolfsberg ist daher ganz überwiegend auf Emissionen von PM10 und Bildung sekundärer Aerosole im Lavanttal zurückzuführen. Der Beitrag von Transport aus Slowenien dürfte deutlich unter 5% liegen.

10.1.2 Horizontale Abgrenzung

Innerhalb des Lavanttales lässt sich eine „regionale Hintergrundbelastung“, die repräsentativ für den Talboden des (breiten) unteren Lavanttales zwischen St. Paul

Für die Abgrenzung des Hintergrundes und des lokalen Beitrages können einerseits die mittleren Tagesgänge der TSP-Konzentration, andererseits der Vergleich der PM10-Daten von Wolfsberg und Magersdorf herangezogen werden.

Die PM10-Messwerte von Magersdorf stellen die beste Näherung für die „Hintergrundbelastung“ im Lavanttal dar. Im Mittel über den Zeitraum (262 Tage) mit Parallelmessung in Magersdorf und Wolfsberg (siehe Kapitel 8.1) machte die mittlere PM10-Konzentration in Magersdorf 77% von jener in Wolfsberg aus. An jenen 64 Tagen innerhalb dieses Zeitraumes, an welchen in Wolfsberg TMW über 50 µg/m³ auftraten, betrug die mittlere PM10-Belastung in Wolfsberg 64 µg/m³, in Magersdorf 51 µg/m³ (79%); in St. Andrä war die mittlere PM10-Belastung mit 53 µg/m³ nur wenig höher als in Magersdorf.

Die Differenz zwischen Wolfsberg und Magersdorf zeigt keine deutliche Abhängigkeit von der Temperaturschichtung. Eine Abschätzung des lokalen Beitrags anhand der mittleren Tagesgänge (Kapitel 8.10.3) stützt sich auf die Annahme, dass die minimale, in der zweiten Nachthälfte gemessene TSP-Konzentration kaum von lokalen Emissionen bestimmt wird, die zu dieser Tageszeit am geringsten sind, sondern überwiegend durch Schadstoffakkumulation im gesamten Lavanttal bedingt ist. Herangezogen werden die mittleren Tagesgänge im Winterhalbjahr, gemittelt von Dienstag bis Donnerstag. Die TSP-Konzentration liegt in Wolfsberg im Winter unter der Woche in der zweiten Nachthälfte etwas über 30 µg/m³, der Mittelwert der TSP-Konzentration beträgt an diesen Tagen 44 µg/m³. Damit ergibt sich ein Beitrag der „Hintergrundbelastung“ des gesamten Lavanttals um 70%.

Es wird daher – anhand der o. g. Schätzungen – davon ausgegangen, dass ca. 75% der PM10-Belastung in Wolfsberg – an hoch belasteten Wintertagen – der „regionalen Hintergrundbelastung“ des Lavanttals zuzuordnen sind und 25% dem lokalen Beitrag der Stadt Wolfsberg.

10.1.3 Vertikale Abgrenzung

Damit unterscheidet sich das Belastungsbild in Wolfsberg insofern von den meisten anderen inneralpinen Regionen, wo in der Regel seichte (Boden-) Inversionen mit den höchsten Schadstoffkonzentrationen verbunden sind.

38 Sie beträgt (für Tage, an denen der TMW in Wolfsberg über 50 µg/m³ lag) bei Bodeninversion und bei abgehobener Inversion je 12 µg/m³, bei hochreichender Inversion 16 µg/m³.
Dies bedeutet, dass bei abgehobenen Inversionen zusätzliche PM10-Quellen wirksam sind, welche – wie die in Kapitel 9 dargestellten chemischen Analysen zeigen – überwiegend sekundäre anorganische Aerosole und davon zum Großteil Sulfat beisteuern. Im Mittel über die fünf Tage mit abgehobener Inversion ist die Sulfat-Konzentration viermal so hoch, die Nitrat-Konzentration doppelt so hoch wie im Mittel über die sechs Tage mit Bodeninversion. Die Konzentrationen von EC und OM unterscheiden sich dagegen nur wenig.

Die chemischen Analysen zeigen, dass bei Bodeninversion etwas höhere EC- und Holzrauch-Anteile auftreten als bei abgehobenen Inversionen, was ein deutscher Hinweis darauf ist, dass diese PM10-Komponenten überwiegend aus bodennahen Quellen am Talboden emittiert werden.

Wertet man alle Tage aus, an denen in Wolfsberg der PM10-TMW über 50 µg/m³ lag, so lag die mittlere PM10-Konzentration bei abgehobener Inversion bei 73 µg/m³, bei einer hochreichenden, am Boden beginnenden Inversion bei 69 µg/m³ und bei einer Bodeninversion (unterhalb St. Georgen) bei 63 µg/m³. Die Klassifikation der verschiedenen Typen von Temperaturschichtung stützt sich auf die Auswertung der Tagesverläufe der Temperatur (siehe Kapitel 8.14). Nachdem die vorliegenden elf Tage mit chemischen Analysen keine exakte Zuordnung einzelner TMW zu Situationen mit bestimmten Temperaturprofilen erlauben, gründet sich die Abschätzung des PM10-Zusatzbeitrages erhöhter Quellen auf die mittlere Konzentrationsdifferenz zwischen Tagen mit abgehobenen Inversionen gegenüber solchen mit Bodeninversion; diese beträgt im Mittel 10 µg/m³, was bei einer mittleren PM10-Belastung von 69 µg/m³ einem relativen Beitrag von 15% entspricht.

Tage mit Bodeninversionen machen nach Kapitel 8.14 ungefähr die Hälfte der Situationen mit TMW über 50 µg/m³ aus, sodass der relative Zusatzbeitrag bei abgehobenen Inversionen mit ca. 8% abgeschätzt wird. Dieser Anteil ist jedenfalls jenem Beitrag der PM10-Belastung in Wolfsberg zuzuordnen, der die „Hintergrundbelastung“ des Lavanttales repräsentiert (Kapitel 10.1.2), da sich in der Stadt Wolfsberg keine erhöht gelegenen Quellen sekundärer Aerosole befinden.

Einschränkend ist festzustellen, dass es - da im Lavanttal nur im Höhenbereich bis St. Georgen (110 m höher als St. Andrä) Temperaturmessdaten vorliegen - nicht exakt möglich ist, den Einflussbereich von Emittenten, die bei Bodeninversion bzw. bei abgehobener Inversion wirksam sind, abzugrenzen. Es kann aber davon ausgegangen werden, dass PM10 aus Straßenverkehr und Hausbrand ganz überwiegend aus bodennahen Quellen am Talboden stammt.

10.2 Sektorale und räumliche Zuordnung der PM10-Belastung zu Emissionen von PM10, NOx, SO$_2$ und NH$_3$

Aufbauend auf den in den beiden vorangegangenen Kapiteln dargestellten Untersuchungen und Auswertungen wird in Tabelle 38 der Beitrag

1. der Stadt Wolfsberg;
2. von Quellen am Talboden des Lavanttales;
3. von erhöht gelegenen Quellen im Lavanttal;

zur PM10-Belastung in Wolfsberg abgeschätzt. Dazu werden folgende Informationen verwendet:

- Räumliche Verteilung der PM10-Belastung im Lavanttal, insbesondere die Abgrenzung der regionalen Hintergrundbelastung im Lavanttal vom Beitrag der Stadt Wolfsberg anhand des Vergleich Wolfsberg – Magersdorf.
- Mittlere Tagesgänge der PM10-Belastung in Wolfsberg.
- Unterschiede der PM10-Belastung in Wolfsberg bei unterschiedlicher vertikaler Temperaturschichtung (Bodeninversion – hochreichende Inversion – abgehobene Inversion).
- Chemische Analysen der PM10-Belastung in Wolfsberg und die Abhängigkeit der PM10-Zusammensetzung von der Temperaturschichtung (die Aussagekraft dieser Daten wird durch den geringen Probenumfang von elf Tagen allerdings eingeschränkt).
- Die räumliche Verteilung der PM10-Emissionen und der Emissionen von SO$_2$ und NOx als PM10-Vorläufer.

Tabelle 38: Räumliche Zuordnung der Herkunft der PM10-Belastung in Wolfsberg (Beiträge auf 10% gerundet)

<table>
<thead>
<tr>
<th>Anteil</th>
<th>Herkunft der Belastung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca. 25%</td>
<td>Emissionen in der Stadt Wolfsberg</td>
<td>ganz überwiegend primäre Partikel (da die Bildung sekundärer Partikel auf der räumlichen Skala der Stadt Wolfsberg kaum eine Rolle spielt).</td>
</tr>
<tr>
<td>ca. 65%</td>
<td>Bodennahe Emissionen des gesamten Lavanttales</td>
<td>Der Beitrag der bodennahen Emissionen des Lavanttales dürfte – unter der Annahme, dass die relativen Anteile der PM10-Inhaltsstoffe, welche im Dez. 2004 und Jänner 2005 analysiert wurden, verallgemeinerbar sind – zu ca. 15% mit sekundären anorganischen Aerosolen (gebildet aus bodennahen Emissionen von NOx, SO$_2$ und NH$_3$, wobei Nitrat dabei einen etwas höheren Anteil als Sulfat aus macht) und zu ca. 50% mit bodenähnlichen sekundären anorganischen Aerosolen (davon ungefähr drei Viertel Ammoniumsulfat) beitragen.</td>
</tr>
<tr>
<td>ca. 10%</td>
<td>erhöhte Quellen im Lavanttal</td>
<td>überwiegend sekundäre anorganische Aerosolen (davon ungefähr drei Viertel Ammoniumsulfat).</td>
</tr>
</tbody>
</table>

Die Abschätzung der Beiträge der verschiedenen Emittentengruppen stützt sich darüber hinaus auf die PM10-Emissionen im Lavanttal (Kapitel 5.1) und die chemischen Analysen der PM10-Zusammensetzung (Kapitel 9).
Abgasemissionen des Straßenverkehrs

Die Abgasemissionen des Straßenverkehrs machen nach Kapitel 5.1.2 ca. 10 bis 15% der PM10-Emissionen in der Stadt Wolfsberg sowie des Bezirkes Wolfsberg an einem Wintertag aus. Da die Messstelle Wolfsberg verkehrsnah gelegen ist, dürften Straßenverkehrsemissionen einen etwas überproportionalen Anteil ausmachen, sodass ein Beitrag von mehr als 15% als realistisch angenommen wird.

Aus den chemischen Analysen lässt sich der Anteil der Abgasemissionen anhand des EC-Anteils abschätzen (14% im Mittel); mit einem Anteil von einem Drittel OM an den Abgasemissionen ergibt sich damit ein geschätzter Beitrag der Abgasemissionen des Straßenverkehrs von ca. 15% bis 20%.

Entsprechend der räumlichen Herkunftszuordnung der (Tabelle 38) und der Verteilung der PM10-Emissionen (Kapitel 5.1.1) lässt sich ca. ein Drittel des Beitrags der Abgasemissionen des Straßenverkehrs der Stadt Wolfsberg und zwei Drittel dem übrigen Lavanttal zuzuordnen.

Nicht-Abgasemissionen des Straßenverkehrs

Entsprechend den Abschätzungen in Kapitel 5.1.1 liegen die Nicht-Abgasemissionen in ähnlicher Höhe wie die Abgasemissionen.

In den chemischen Analysen spiegeln sich die Nicht-Abgasemissionen überwiegend im (mineralischen) „Rest“ (insgesamt 25%), im NaCl sowie in einem (nicht quantifizierbaren) Beitrag zu OM wider.

Hausbrandemissionen (holzbeheizte Einzelhöfen)

Emissionen des Hausbrandes machen gemäß Kapitel 5.1.2 ca. 50% der PM10-Emissionen in der Stadt Wolfsberg bzw. 40% des Bezirkes Wolfsberg an einem Wintertag aus.

In Hinblick darauf, dass bei Bodeninversionen hoch gelegene Quellen (dabei handelt es sich im wesentlichen um die Schlote der Mondi Packaging Frantschach) zur PM10-Belastung in Wolfsberg nicht beitragen (diese werden nachfolgend diskutiert) und unter der plausiblen Annahme, dass Nicht-Abgasemissionen nur aus der Stadt Wolfsberg zur PM10-Belastung in Wolfsberg beitragen, steigt der Anteil der Hausbrandemissionen auf 60% der verbleibenden PM10-Emissionen.

Anhand der chemischen Analysen würde sich der Beitrag der Hausbrandemissionen – abgeschätzt über den mittleren Levoclucosan-Anteil von 20% sowie Beiträge sekundärer organischer Aerosole (HULIS) und anderer organischer C-Verbindungen – mit ca. 25% ergeben, was unter dem relativen Anteil, errechnet aus den Emissionsdaten, liegt. Diese Diskrepanz kann einerseits dadurch bedingt sein, dass die chemischen Analysen (elf Tage) kein repräsentatives Bild geben, andererseits unterliegen die Emissionsdaten des Hausbrandes relativ hohen Unsicherheiten. Zudem sind die erheblichen Unsicherheiten bei der Hochrechnung des

39 wobei zu berücksichtigen ist, dass die angewandte Analysemethode den EC-Anteil etwas überschätzt

Es wird daher von einem Beitrag der Hausbrandemissionen zur PM10-Belastung von 30 bis 40% ausgegangen.

Industrie und Gewerbe

Emissionen von Industrie und Gewerbe machen gemäß Kapitel 5.1.2 ca. 25% der PM10-Emissionen in der Stadt Wolfsberg (Hauptsender war im Jahr 2003 die Offner Holzindustrie) und ca. 35% des Bezirkes Wolfsberg an einem Wintertag aus.

In Hinblick darauf, dass bei Bodeninversionen hoch gelegene Quellen zur PM10-Belastung in Wolfsberg nicht beitragen und unter der plausiblen Annahme, dass Nicht-Abgasemissionen nur aus der Stadt Wolfsberg zur PM10-Belastung in Wolfsberg beitragen, macht der Anteil der Industrie-Emissionen an den Emissionen am Talboden im Lavanttal ca. 25% aus; dabei werden die Emissionen der Mondi Packaging Frantschach ausgenommen, da diese als nur bei abgehobenen Inversionen zum Tragen kommen.

Der Beitrag der primären PM10-Emissionen der Mondi Packaging Frantschach (\(Na_2SO_4\)) lässt sich an Tagen mit abgehobener Inversion mit maximal 3% zur PM10-Belastung bei abgehobenen Inversionen (Kapitel 9.3.3) angeben und dürfte damit unter 2% zur gesamten PM10-Belastung in Wolfsberg beisteuern.

Der Beitrag sekundärer anorganischer Aerosole aufgrund von NOx-, NH\(_3\)- und SO\(_2\)-Emissionen am Talboden des Lavanttales macht, wie die chemischen Analysen zeigen, bei Bodeninversionen einen Anteil von ca. 15% zur PM10-Belastung in Wolfsberg aus. Davon macht - soweit die chemischen Analysen eine repräsentative Aussage erlauben - Ammoniumnitrat etwa 40% und Ammoniumsulfat (inkl. Wasser) etwa 60% aus.

Auf dem Straßenverkehr stammen ca. 75% der NOx-Emissionen am Talboden des Lavanttales (d. h. ohne die NOx-Emissionen der Mondi Packaging Frantschach von 550 t). Die SO\(_2\)-Emissionen am Talboden teilen sich zu ca. 50% auf Industrie und Gewerbe, 35% Hausbrand und 15% Straßenverkehr auf.

Der Beitrag sekundärer anorganischer Aerosole aufgrund von NOx-, NH\(_3\)- und SO\(_2\)-Emissionen aus hoch gelegenen Quellen – dabei handelt es sich im Wesentlichen um die Schlote der Mondi Packaging Frantschach – macht bei abgehobenen Inversionen zusätzlich über 5% zur PM10-Belastung in Wolfsberg aus, wobei über drei Viertel auf Ammoniumsulfat entfallen.

Aufbauend auf diese Quellzuordnung und die sektorale Verteilung der Emissionen (Kapitel 5.1.1) lässt sich der relative Anteil der verschiedenen Quellgruppen wie in Tabelle 39 angegeben abschätzen.
Tabelle 39: Abschätzung der Beiträge verschiedener Emittentengruppen zur erhöhten PM10-Belastung (TMW über 50 µg/m³) in Wolfsberg im Jahr 2003

<table>
<thead>
<tr>
<th>Summe</th>
<th>Stadt Wolfsberg</th>
<th>Talboden Lavanttal</th>
<th>Erhöhte Quellen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25%</td>
<td>65%</td>
<td>10%</td>
</tr>
<tr>
<td>Primäre Partikel</td>
<td>25%</td>
<td>50%</td>
<td>2%</td>
</tr>
<tr>
<td>Straßenverkehr Abgas</td>
<td>>15%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Straßenverkehr Nicht-Abgas</td>
<td>>5%</td>
<td>>5%</td>
<td></td>
</tr>
<tr>
<td>Hausbrand</td>
<td>30-40%</td>
<td><10%</td>
<td><30%</td>
</tr>
<tr>
<td>Industrie</td>
<td>15%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Sekundäre Partikel</td>
<td>15%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Straßenverkehr (Nitrat)</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrie (v. a. Sulfat)</td>
<td>5%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>andere Quellen</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anzumerken ist, dass mit der 2004 erfolgten Stilllegung des Heizkessels der Fa. Offner Holzindustrie in Wolfsberg – auf welche fast die gesamten industriellen PM10-Emissionen in der Stadt Wolfsberg entfielen – und des Kraftwerkes St. Andrä (Reserve), welches ca. 50% der industriellen PM10-Emissionen am Talboden beisteuerte, der Beitrag der industriellen Emittenten zurückgegangen ist. Auf diese Emittenten ging ein Beitrag von ca. 10% zur PM10-Belastung in Wolfsberg zurück.

10.3 Von Grenzwertüberschreitungen vermutlich betroffenes Gebiet

Die Überschreitung des Grenzwertes für PM10 wurde nur an der Messstelle Wolfsberg durch Messungen (für das Jahr 2003) belegt.

Die PM10-Messungen an der Messstelle St. Andrä zwischen August 2003 und August 2004 ergaben über einen Zeitraum von etwa zwölf Monaten eine Anzahl von 36 TMW über 50 µg/m³ (d. h. knapp eine Grenzwertverletzung), in Wolfsberg traten im selben Zeitraum 61 TMW über 50 µg/m³ auf.

Würde man die in St. Andrä und Magersdorf gemessene PM10-Belastung anhand des Vergleichs mit Wolfsberg (siehe Kapitel 8.2) auf das Kalenderjahr 2003 extrapolieren, so würde man in St. Andrä 41 TMW über 50 µg/m³ erhalten, in Magersdorf 38 TMW über 50 µg/m³.

Emissionsdichten infolge hoher Siedlungsdichten, Verkehrs- und industrieller Betriebe aus.

Keine gesicherten Aussagen können über den engen Talabschnitt des Lavanttales nördlich von Frantschach gemacht werden, da dieser Talbereich sich hinsichtlich Topographie und Emissionsstruktur deutlich vom mittleren Lavanttal unterscheidet. Zwar ist hier das für Schadstoffverdünnung zur Verfügung stehende Luftvolumen geringer, doch dürfte die stärkere Ausbildung der Talwindzirkulation auf der anderen Seite die Schadstoffverdünnung begünstigen.

Die TSP-Belastung betrug in den letzten Jahren in St. Georgen etwa 20 µg/m³, die PM10-Belastung dürfte in vergleichbarer Höhe sein. In diesem Höhenbereich ist daher die PM10-Belastung aller Wahrscheinlichkeit nach bereits deutlich unter dem Grenzwert.

Statuserhebung PM10 Wolfsberg – Faktoren, die zu den Grenzwertüberschreitungen geführt haben
11 VORAUSSICHTLICHES SANIERUNGSGEBIET

Als „Sanierungsgebiet“ im Sinne des §2(8) IG-L ist jener Teil des österreichischen Bundesgebietes abzugrenzen, in dem sich die Quellen der registrierten Schadstoffbelastung befinden, für die im Maßnahmenkatalog gemäß §10 Anordnungen getroffen werden können.

Zur PM10-Belastung in Wolfsberg tragen Emissionen im gesamten Lavanttal bei (siehe Kapitel 10.2). Das Sanierungsgebiet sollte daher das Lavanttal im Bezirk Wolfsberg umfassen.

Transport von PM10 und von Vorläufersubstanzen sekundärer Partikel aus dem unteren Lavanttal und aus dem Drautal unterhalb von Lavamünd in Slowenien (Bereich Dravograd) kann ebenfalls zur PM10-Belastung in Wolfsberg beitragen. In Hinblick auf die geringen Emissionsdichten in diesem Abschnitt des Drautals ist dieser Beitrag allerdings als gering einzuschätzen, wie auch die vergleichsweise niedrige PM10-Belastung in Lavamünd belegt.

Sanierungsgebiet: Lavanttal im Bezirk Wolfsberg
Statuserhebung PM10 Wolfsberg – Voraussichtliches Sanierungsgebiet
12 MÖGLICHE MAßNAHMEN

Die vorliegenden Daten und Auswertungen zeigen, dass die bedeutendsten Quellen der PM10-Belastung in Wolfsberg Straßenverkehr, Hausbrand und Industrie (hier v. a. die SO₂-Emissionen des Zellstoffwerkes Mondi Packaging AG in Frantschach) sind. Maßnahmen zur Minderung der PM10-Belastung in Wolfsberg sollten daher die Emissionen dieser Quellen reduzieren.

Bei allen Maßnahmen ist auf Synergieeffekte zu anderen umweltpolitischen Zielen, wie z. B.:

- Emissionsobergrenzen für NOx gemäß Emissionshöchstmengen-Gesetz bzw. NEC-Richtlinie;
- Verminderung der NOx-Emissionen zur Einhaltung der Grenzwerte (bzw. der Summe aus Grenzwert und Toleranzmarge) für NO₂;
- Reduktion der Treibhausgasemissionen (Kyoto-Ziel);
- Verminderung der Lärmbelastung;
- Verringerung der volkswirtschaftlichen Kosten des Straßenverkehrs zu achten.

Transport von PM10 aus dem Ausland spielt nach aktuellem Kenntnisstand eine sehr untergeordnete Rolle.

Bei der rechtlichen Erarbeitung und Umsetzung von effektiven Maßnahmen wird die Kooperation des Landes Kärnten mit dem Bund nützlich sein.

Erfahrungen in anderen Städten Österreichs

Umfangreiche Maßnahmenpakete zur Verminderung der PM10-Belastung befinden sich derzeit in Klagenfurt und in Graz in Umsetzung (http://www.feinstaubfrei.at). Diese Maßnahmenpakete umfassen alle relevanten Emittenten, Schwerpunkte sind in Klagenfurt u. a. der Ausbau der Fernwärme, verkehrslenkende und – beschränkende Maßnahmen, Attraktivierung des Öffentlichen Verkehrs und Optimierung des Winterdienstes (Streusplitt). Bei der Ausarbeitung von Maßnahmenplänen kann daher auf die in diesen Städten gewonnenen Erfahrungen aufgebaut werden. In Wien werden derzeit Maßnahmenpläne sowohl für die Stadt...
Wien (ULI – Urbane Luftinitiative) als auch in Zusammenarbeit mit den Ländern Niederösterreich und Burgenland erarbeit.

Maßnahmenkataloge gemäß IG-L für PM10 wurden bereits für das Inntal, für Lienz sowie für den Ballungsraum Graz und das Voitsberger Becken erlassen; diese umfassen Partikelfiltersysteme für Baumaschinen und Geschwindigkeitsbeschränkungen. In Linz betrifft der Maßnahmenkatalog Emissionsminderungen bei der voestalpine AG.

12.1 Heizungsanlagen (Hausbrandemissionen)

L�. § 27 IG-L können Begrenzungen der Emissionen aus Heizungsanlagen durch landesrechtlich Maßnahmen festgelegt werden.

Die Minderung der PM10-Emissionen aus Biomasseheizungen ist durch eine Optimierung der Verbrennungstechnologie möglich.

Da aber auch in den anderen Bundesländern diese wiederkehrenden Überprüfungen sehr unterschiedlich geregelt werden, wird zurzeit an einer bundesweiten Harmonisierung auf der Basis der ÖNORM M 7510-4 gearbeitet.

Die Förderung der Sanierung von Gebäuden und Wohnungen ist in Kärnten an verschiedene Bedingungen geknüpft, allerdings werden keine bestimmten Heizungstypen oder Emissionsgrenzwerte von (Biomasse-)Heizungen gefordert. Die Förderungsbedingungen sollten daher entsprechend geändert, so dass zukünftig nur emissionsarme Heizungen gefördert werden.

Darüber hinaus empfiehlt sich naturgemäß eine verstärkte thermische Sanierung zur Verminderung des Brennstoffeinsatzes. Diese könnte im Zuge einer Fassadensanierung verpflichtend vorgeschrieben werden.

Ebenso ist der Ausbau von Fernwärme eine geeignete Möglichkeit, die Emissionen aus dem Hausbrand zu reduzieren. Zu beachten ist allerdings, dass die Bereitstellung der Fernwärme aus Anlagen, die mit dem Stand der Technik entsprechenden Abgasreinigungsanlagen ausgestattet sind, erfolgt.

Ob es durch die relativ preisgünstigen Einzelöfen bspw. auf Baumärkten zu einer Umkehr des in den letzten Jahren abnehmenden Trends bei Einzelöfen und Festbrennstoffen kommt oder kommen wird, kann mangels Daten nicht gesagt werden. Empfohlen wird eine Beobachtung dieser Entwicklung.

12.2 Straßenverkehr

Maßnahmen betreffend den Straßenverkehr können folgende Ansätze verfolgen:

- Generelle Reduktion der Emissionen des Straßenverkehrs durch österreichweit wirksame fahrzeugtechnische oder ökonomische Maßnahmen.
- Gezielte Reduktion der Emissionen des Straßenverkehrs im Sanierungsgebiet durch spezielle verkehrsplanerische, raumplanerische oder ökonomische Maßnahmen.
Zur Minderung der PM10-Emissionen aus dem Verkehr sind jedenfalls die folgenden einander ergänzenden Strategien zielführend:

1. Verringerung der PM10-Emission pro KFZ (d. h. der spezifischen Emissionen) durch fahrzeugtechnische Maßnahmen (Abgasnachbehandlung).
2. Verringerung der Verkehrsleistung (d. h. der Aktivität) auf der Straße.

Bei verkehrsplanerischen Maßnahmen sind die verschiedenen Verkehrsströme (Tourismus, Einkaufsverkehr, Pendler) zu berücksichtigen.

12.2.1 Maßnahmen im Rahmen des IG-L

12.2.1.1 Temporäre Verkehrsbeschränkungen

Nach §14 IG-L kann der Verkehr zeitlich und räumlich eingeschränkt sowie die Geschwindigkeit beschränkt werden (ausgenommen sind Fahrzeuge im öffentlichen Dienst, öffentlicher Verkehr, aber auch der Lieferverkehr, falls Ausgangs- oder Zielpunkt im Sanierungsgebiet liegen).

Verkehrsbeschränkungen könnten daher Fahrverbote für

- bestimmte Fahrzeuge (u. U. in Abhängigkeit von deren Schadstoffausstoß);
- zu bestimmten Tageszeiten;
- an bestimmten Wochentagen;
- in bestimmten Jahreszeiten (z. B. Hochwinter mit ungünstigen Ausbreitungsbedingungen);

umfassen.

Um einer unerwünschten Verlagerung (etwa auf bestimmte Tageszeiten bzw. Strecken) entgegenzuwirken, sollte parallel zu den Verkehrsbeschränkungen ein attraktives Angebot für den Transport von Personen und Gütern im „Umweltverbund“ geschaffen bzw. ausgebaut werden. In Zeiten mit
Verkehrsbeschränkungen kann die Verlagerung auf umweltfreundlichere Verkehrsmittel weithers durch Maßnahmen wie z. B. die Gratisbenützung von Öffentlichen Verkehrsmitteln unterstützen werden.

Erste Erfahrungen mit sehr weit reichenden Fahrverboten liegen u. a. aus zwei Regionen (Lombardei und Emiglia Romagna) in Italien vor [CAFE, 2003], welche die Wirksamkeit derartiger Maßnahmen im ‘Realfall’ bestätigen konnten. Die Ergebnisse beider Regionen zeigen aber auch, dass nur sehr weit reichende Verkehrsbeschränkungen eine spürbare Reduktion z. B. der PM10-Belastung nach sich ziehen.

Für die Region Graz wurde weiter im Jahr 2003 eine Untersuchung über das Vermeidungspotenzial von Staub und NOx für unterschiedliche Maßnahmen durchgeführt [HEIDEN, 2003]. Eine der Maßnahmen bezog sich auf das Fahrverbot für Pkw mit geraden bzw. ungeraden Endungen der Kennzeichen an geraden bzw. ungeraden Tagen. Dabei wurde eine Verminderung der Verkehrsleistung um rund 40 % der Pkw angenommen (eine Halbierung ist durch die Verlagerung der Fahrzeugnutzung auf die gestatteten Zeiten, das Aufrechterhalten von Ausnahmegenehmigungen etc. nicht möglich).

Durch diese Maßnahme wurde ein Reduktionspotenzial von rund 20% für die NOx-Emissionen und rund 31 % für PM10 - Abgasemissionen ermittelt. Bei Berücksichtigung der Abriebs- und Aufwirbelungsemisionen ergibt sich für die PM10-Gesamtemission ein Reduktionspotenzial von rund 26 %.

12.2.1.2 Geschwindigkeitsbeschränkungen auf 80/100 km/h für Pkw (außerorts / Autobahn)

In HAUSBERGER (2003) wurde das Reduktionspotential von Geschwindigkeitsbeschränkungen für verschiedene Luftschadstoffe inkl. PM berechnet. Bei Pkw ergeben sich bei Tempo 80/100 km/h verglichen mit Tempo 100/130 PM-Abgasreduktionen auf Autobahnen um 17%, auf Freilandstraßen um 16%. Die Emissionen von NOx würden gleichzeitig um 36% bzw. um 18% reduziert.

Bei SNF würde sich dagegen bei Tempo 60 eine Erhöhung der PM-Abgasemissionen ergeben, da bei dieser Geschwindigkeit die Motoren in einem ungünstigen Lastbereich betrieben werden.

Für Pkw ist demnach ein Tempolimit ein zielführendes Instrument, um die abgasbedingten PM10-Emissionen zu verringern. Entsprechend HAUSBERGER (2003a) stellte sich ein Tempolimit von 100 km/h für Pkw und leichte Nutzfahrzeuge auf der A12 auch hinsichtlich der NOx-Emissionen als wirksame und realisierbare Maßnahme heraus. Mit dieser Maßnahme können die PM10-Abgas-Emissionen aus dem Verkehr auf der Autobahn um rund 16% und die NOx-Emissionen um rund 11% reduziert werden.

41 berechnet für den Abschnitt der A12 zwischen Jenbach und Wattens.
12.2.1.3 Kontrolle von Geschwindigkeitsbeschränkungen

Kontrollen sind notwendig

Wesentlich für die Einhaltung vorgeschriebener Geschwindigkeitsbeschränkungen ist deren konsequente Kontrolle. So zeigen z. B. Untersuchungen in Berlin [LUTZ, 2004], dass im Zuge eines Tempolimits nur bei sichtbarer Polizeikontrolle eine deutliche Verlangsamung des Verkehrs um 10 km/h erwirkt werden konnte, ansonsten sank die mittlere Fahrzeuggeschwindigkeit nur um weniger als 5 km/h. Ähnliche Erfahrungen – eine allgemeine Reduktion der Geschwindigkeit tritt zwar ein, die Geschwindigkeitsbeschränkung wird im Wesentlichen aber nur von rund der Hälfte der Pkw-Fahrer eingehalten – konnten bei der Multifunktionalen Lärmschutzanlage in Gleisdorf (Stmk.) gemacht werden.

12.2.1.4 Kombination von Verkehrs- und Geschwindigkeitsbeschränkung

Im Rahmen der Grazer Studie [HEIDEN, 2003] wurde weiters eine Kombination an Verkehrs- und Geschwindigkeitsbeschränkungen hinsichtlich ihrer Wirkung untersucht. Die betrachtete Maßnahme besteht aus der Kombination des wechselseitigen Fahrverbots (gerade – ungerade Kennzeichen) und der Geschwindigkeitsbeschränkung von Pkw (innerorts: 30 km/h; außerorts: 80 km/h; Autobahnen: 100 km/h).

12.2.1.5 Begleitende Maßnahmen

Erhöhung der Akzeptanz

Parallel zu verkehrs- bzw. geschwindigkeitsbeschränkenden Maßnahmen sollten begleitende Maßnahmen gesetzt werden, die einerseits die Akzeptanz der zu setzenden Maßnahmen erhöhen, andererseits ein Ausweichen z. B. tageszeitlich vermeiden. Hierzu zählen z. B.:

- Anbieten von Gratisbenutzung Öffentlicher Verkehrsmittel (zumindest bei kurzfristig in Kraft gesetzten Maßnahmen).
- Erweitertes Angebot an Öffentlichen Verkehrsmitteln (Fahrplanverdichtung und zeitliche Ausweitung der Fahrzeiten) – insbesondere ist auf eine verstärkte Anbindung von benachbarten Gemeinden zu achten.
- Breite Information der Bevölkerung (Radio, Fernsehen, Zeitung, Internet,…) über die Ursachen und Wirkungen der Schwebestaubbelastung.
12.2.2 Maßnahmen außerhalb des IG-L

Zur Minderung der Emissionen aus dem Verkehr sind generell
- technische, fahrzeugbezogene Maßnahmen,
- systembezogene (verkehrslenkende bzw. verkehrsvermeidende) Maßnahmen sowie
- bewusstseinsbildende Maßnahmen
notwendig.

Die Emissionen aus dem Straßenverkehr sind unterschiedlichen Verursachern zuzuordnen:
- dem überregionalen Verkehr auf der A2-Südautobahn
- dem regionalen Verkehr im Lavanttal, bzw. dem Ziel/Quellverkehr aus dem Lavanttal (Richtung Klagenfurt bzw. Völkermarkt, Richtung Graz sowie Richtung Obersteiermark (Aichfeld)).
- dem örtlichen Verkehr in Wolfsberg.

Aufgrund des unterschiedlichen räumlichen Bezuges der Verursacher sind auch die Maßnahmen auf unterschiedlichen räumlichen Bezugsebenen zu sehen. So sind einerseits Maßnahmen der Stadt Wolfsberg sinnvoll, andererseits sind Maßnahmen notwendig, die auf eine Reduktion des Verkehrs auf der A2-Südautobahn zielen bzw. welche die Verkehrsverbindungen vom Lavanttal nach Klagenfurt, Graz und in die Obersteiermark betreffen (z. B. Aufbau eines attraktiven ÖV-Netzes im Lavanttal für unterschiedliche Nutzergruppen wie z. B. für Pendler und für den Tourismus, oder die Verlagerung des Güterverkehrs auf die Bahn).

Im Folgenden werden Maßnahmen aufgelistet, deren Umsetzbarkeit in den Zuständigkeitsbereich des Landes fallen.

12.2.2.1 Verstärkte Kontrolle von technisch nicht einwandfreien Fahrzeugen mit offensichtlich erhöhten Emissionen

12.2.2.2 Neuanschaffung emissionsarmer kommunaler und Landesfahrzeuge

Im gegenständlichen Untersuchungsraum kommt den direkten Auswirkungen dieser Maßnahme wahrscheinlich nur eine geringe Bedeutung zu. Dem Einsatz kann allerdings eine „Vorbildwirkung“ zugeschrieben werden, die auch zu einem erhöhten Verständnis in der Bevölkerung für weiterreichende Maßnahmen beitragen kann. Vorraussetzung ist allerdings auch eine entsprechende Öffentlichkeitsarbeit.

12.2.2.3 Benachteiligung von emissionsstarken Fahrzeugen, Fördern von Abgas-Nachbehandlungstechnologien

Fahrzeuge mit geringen spezifischen Emissionen stehen zwar am Markt zur Verfügung, die Auswirkung ihrer Verwendung macht sich jedoch erst bei ausreichender Durchdringung der Fahrzeugflotte bemerkbar. Um die Durchdringung emissionsärmer Fahrzeuge in der Flotte zu beschleunigen, sollte auch von Landeseite die Verwendung emissionsärmer Fahrzeuge gefördert bzw. emissionsstärker Fahrzeuge benachteiligt werden. So wird in HAUSBERGER (2003a) – nur die A12 in Tirol betrachtend – für die Einführung eines Fahrverbotes für Nutzfahrzeuge bis inkl. EURO1 ein Reduktionspotenzial von 8% für PM10 ermittelt.

Dabei ist allerdings zu berücksichtigen, dass es durch den Einsatz von Dieselpartikelfiltern (je nach System) zu einer Erhöhung des Verhältnisses NO₂ zu NO bei den Stickoxidemissionen kommen kann, wobei die Gesamt-NOx-Emissionen allerdings nicht erhöht werden. Der Einsatz von Dieselpartikelfiltern kann daher an verkehrsnahen Standorten zu einer Erhöhung der NO₂-Konzentration führen. Nachdem auch in der freien Atmosphäre eine Umwandlung des emittierten NO zu NO₂ erfolgt, ist dieser Effekt v. a. von lokaler Bedeutung. Der
gleiche Effekt tritt auch bei Oxidationskatalysatoren auf, die bei Dieselfahrzeugen bereits jetzt großteils eingebaut werden. Die \(\text{NO}_2 \) - Konzentrationserhöhung muss daher bei der Maßnahmenbeurteilung beachtet werden.

12.2.2.4 Maßnahmen zur Verringerung der Aufwirbelungsemissionen

Die Abschätzung der Emissionen durch Aufwirbelung unterliegt großen Unsicherheiten. Ebenso liegen nicht viele ‚harte‘ Daten über die Möglichkeiten zur Reduktion dieser Emissionen vor. Als Sofortmaßnahmen bieten sich technische und organisatorische Maßnahmen an, deren Wirkung allerdings schwer quantifizierbar ist:

Eine Verminderung der Abriebs- und Aufwirbelungsemissionen kann generell über folgende Schritte erzielt werden:

- einen Rückgang des Verkehrsvolumens, v. a. bei schweren Kfz;
- prinzipiell würde auch ein flüssiger Verkehrsablauf den Reifen- und Bremsenabrieb vermindern. Letztere Maßnahme kann allerdings wiederum zu einer Verkehrsteigerung durch die damit gesteigerte Attraktivität des Kfz-Verkehrs führen.
- Verminderung der Staubbeladung der Straßenoberfläche.

Reduktion des Eintrages von Staub in Straßen

Die Reduktion des Eintrages von Staub auf die Straße kann zum Beispiel durch eine Reduzierung des Einsatzes von Streugut im Winterdienst erreicht werden.

Weiters zu beachten sind diffuse Emissionsquellen im Nahbereich von Straßen wie etwa:

- Baustellen (siehe Kapitel 12.4),
- Manipulation von Schüttgütern,
- Brachflächen im Nahbereich von Straßen,
- unbefestigte Straßen und Parkplätze,
- Eintrag von Schmutz von z. B. Feldern, etc.

In Wien konnte beispielsweise im Winter 2003/04 aufgrund der neuen Winterdienstverordnung\(^{42}\) der Einsatz von Streusplitt gegenüber früheren Wintern

\(^{42}\) Verordnung des Magistrats der Stadt Wien betreffend das Verbot und die Einschränkung der Verwendung von bestimmten Auftaumitteln und bestimmten abstumpfenden Streumitteln (Winterdienst-Verordnung 2003)\(^{42}\).

deutlich verringert werden, obwohl im Winter 2003/04 deutlich häufiger Schneefall auftrat als in den Jahren davor [siehe auch UMWELTBUNDESAMT, 2004g].

weniger Streusplitt

Forcierung der Straßenreinigung

12.2.2.5 Maßnahmen zur Verringerung der Verkehrsleistung auf der Straße

Erfahrungen aus den vergangenen Jahren haben gezeigt, dass die Erfolge der fahrzeugbezogenen Emissionsminderungen durch eine erhöhte Verkehrsleistung auf der Straße wieder wettgemacht werden. Neben dem Emissionsverhalten der Fahrzeuge sind daher besonders Maßnahmen notwendig, die auf eine

Systembezogene Maßnahmen wirken i.d.R. nicht für sich alleine, sondern sind als komplexes Gebilde zu verstehen, die nur miteinander wirksam werden können. Sie umfassen u.a. folgende Maßnahmen:

- Verbesserung der Angebote des Umweltverbundes (öffentlichen Verkehrs, Rad- und Fußwege);
- Raumplanerische Schritte zur Vermeidung langer Wege zwischen Wohnen, Arbeit, Freizeit, Einkaufen
- ökonomische Steuerungsinstrumente zur Verlagerung des Verkehrs von der Straße auf den Umweltverbund.

Maßnahmen zur Verringerung der Verkehrsleistung auf der Südautobahn A2

Die Untersuchungen zeigen, dass der Großteil der Verkehrsemissionen im Lavanttal auf die Südautobahn A2 entfällt. Das bedeutet, dass insbesondere Maßnahmen notwendig sind, die zu einer Verringerung des Verkehrsaufkommens auf der Südautobahn A2 führen. Hierzu werden als notwendig erachtet:

Der Vergleich der Anreisezeiten mit öffentlichen Verkehrsmitteln gegenüber jenen auf der Straße zu Reisezielen in Kärnten und Nordostitalien in Tabelle 40 zeigt deutlich auf, dass die Reisezeiten mit öffentlichen Verkehrsmitteln zumeist extrem unattraktiv sind.

Verbesserungen des Öffentlichen Verkehrs (ÖV) im Lavanttal

Als Maßnahmen für Verbesserungen des öffentlichen Verkehrs im Lavanttal werden vorgeschlagen:

- Beschleunigungsmaßnahmen im öffentlichen Verkehr, z. B. Schnellverbindungen zwischen Wolfsberg, Völkermarkt und Klagenfurt; Wiederinbetriebnahme eines attraktiven Reisezugverkehrs zwischen Wolfsberg und der Obersteiermark (Zeltweg);
- Optimierung des Reisezugangebots innerhalb des Lavanttales zwischen Bad St. Leonhard und St. Paul;
- Optimierung des regionalen Busangebotes im Lavanttal;
- Optimierung des städtischen Busangebotes in der Stadt Wolfsberg.

Um eine flächenmäßige Erschließung mit öffentlichen Verkehrsmitteln zu erreichen, sollten weiters bedarfsgerechtete, flexible Betriebsformen eingerichtet werden, wie z. B. Rufbusse oder Anrufsammeltaxis. Diese haben den Vorteil, dass der Aufwand nur bei tatsächlichem Bedarf entsteht, dadurch wird eine wirtschaftlichere Betriebsführung ermöglicht.

Die Umsetzung entsprechender Maßnahmen sollte nicht von der Fertigstellung der Koralmbahn abhängig gemacht werden.

43 Fahrzeit Wolfsberg (Rathaus) – Klagenfurt ÖV: 1:22, Straße: 0:45
Wolfsberg – Leoben ÖV: 2:03, Straße: 1:27
Wolfsberg – Völkermarkt ÖV: 0:46; Straße 0:22
Wolfsberg – Graz (Jakominiplatz) ÖV: 1:37, Straße 0:59 (Quelle: www.oeb.at, www.tiscover.at)
Die Planungen, welche den öffentlichen Verkehr betreffen, sollen jedenfalls mit Bedacht auf die positiven Auswirkungen auf die PM10-Belastung betrieben und in entsprechendem Ausmaß forciert werden.

Wesentlich für die Nutzung des Öffentlichen Verkehrs ist eine **Marketing- und Informationskampagne** für den ÖV, die vor allem auch die Bevölkerung mit Informationen über die ÖV-Angebote in der Region versorgt. Ein Teil hierfür kann auch die Einrichtung einer Mobilitätszentrale sein.

Parkraum

Bewirtschaftung privater Verkehrserzeuger und Querfinanzierung für den Umweltverbund

Eine Möglichkeit, öffentliche Verkehrsmittel attraktiver zu gestalten, liegt in der Parkraumbewirtschaftung, auch von privaten Verkehrserzeugern (Einkaufs-, Freizeitzentren, Parkplätze von Schigebieten etc.). Allerdings gibt es dazu keine rechtliche Verpflichtungsmöglichkeit.

Park&Ride

An den Bahnstationen der Strecke Klagenfurt – Wolfsberg – Zeltweg sollten Park&Ride-Anlagen errichtet werden, die das Umsteigen vom Auto auf die Bahn ermöglichen.

Verlagerung des Güterverkehrs auf die Schiene

Besonders zur Reduktion des Güterverkehrs auf der A2 – Südautobahn sollten Maßnahmen zur Verlagerung auf die Schiene getroffen werden, z. B. über kombinierten Verkehr oder die Rollenden Landstraße sowie Förderung von Infrastrukturleistungen, die einen raschen Umschlag vom Lkw auf die Bahn – auch in regionalen Güterbahnhöfen, ermöglichen.

Weiters sollte eine Forcierung des Transportes mit der Eisenbahn für bestimmte Fahrzeuge (u. U. abhängig von der Schadstoffemission) und/oder zu bestimmten Zeiten (z. B. Verpflichtung, Förderungen,…) überprüft werden

Betriebliches Mobilitätsmanagement fördern

Ziel von betrieblichem Mobilitätsmanagement ist u.a. die Änderung des Mobilitätsverhaltens der Mitarbeiter bei der Anreise zugunsten des „Umweltverbundes“, die Transportrationalisierung und Optimierung der Logistik und von Fuhrparks sowie bewusstseinsbildende Maßnahmen und Sensibilisierung der Unternehmen und ihrer Mitarbeiter gegenüber dem Thema „Verkehr und Umwelt“. Derartige Projekte werden bereits im Zuge von klima:aktiv von Bundesebene gefördert (Informationen: www.mobilitaetsmanagement.at).

Auch von Landesebene sollten diese Projekte forciert bzw. beworben und gefördert werden.

12.2.2.6 Maßnahmen im Bereich der Raumordnung

1. Prinzipiell sollte eine weitere Zersiedelung vermieden und kompakte Siedlungskörper forciert werden, nicht zuletzt, um einen betriebswirtschaftliche Führung öffentlicher Verkehrsmittel zu ermöglichen.

In Anlehnung an diese Erkenntnisse sollte für die Region ein Einzelhandelskonzept erstellt werden, dass eine gezielte standörtliche Entwicklung des Einzelhandels ermöglicht und von sämtlichen Beteiligten auch getragen wird. Besonderes Augenmerk sollte dabei auf die Verkehrserzeugung gelegt werden. Im Zuge dieses
Konzeptes sollten auch Fragen der Parkraumbewirtschaftung von Einkaufszentren sowie die Einhebung einer Verkehrerschließungsabgabe zur Querfinanzierung von Öffentlichen Verkehrsmitteln geklärt werden.

12.2.2.7 Bewusstseinsbildende Maßnahmen

Ein weiteres, wesentliches Element eines Maßnahmenpaketes ist die Bewusstseinsbildung. Durch bewusstseinsbildende Maßnahmen sollen Veränderungen im Verkehrsverhalten auf unterschiedlichen Ebenen ansetzen, sodass der Umweltverbund auch tatsächlich genutzt wird:

- Fahrverhalten (Ökonomische Fahrweise, Geschwindigkeiten)
- Verkehrsmittelwahl (Nutzung des „Umweltverbundes“, z. B. Freizeit- und Einkaufsverkehr sowie generell kurze Strecken mit dem Fahrrad, Kinder zu Fuß oder mit öffentlichen Verkehrsmitteln zum Kindergarten zu bringen etc.)

Bewusstseinsbildende Maßnahmen können auf unterschiedliche Art und Weise erfolgen, hierzu zählen Aufklärungsbroschüren, Medienoffensive (Radio, Fernsehen,...), Veranstaltungen z. B. im Rahmen des Autofreien Tages im September. Bei all diesen Maßnahmen sollten die Zusammenhänge zwischen dem Fahrverhalten eines jeden einzelnen und den Umweltbelastungen erläutert werden. Zu bewusstseinsbildenden Maßnahmen zählen aber auch Aktionen wie z. B. „Verkehrssparen Wienerwald“.

12.2.2.8 Lobbying für bundesweite Maßnahmen mit hoher Wirksamkeit

Für eine Verringerung der PM10- und NOx-Emissionen des Straßenverkehrs sind neben Maßnahmen auf Landesebene auch bundesweite Maßnahmen zielführend. Eine Reihe von möglichen Maßnahmen sind in der Studie „Schwebestaub in Österreich – Fachgrundlagen für eine kohärente Strategie zur Verminderung der PM10-Belastung“, zusammengefasst [UMWELTBUNDESAMT, 2005]. Als effizienteste Maßnahmen im Verkehrsbereich sind zu nennen:

- Fahrleistungsabhängige Maut - auch für Pkw;
- Anpassung der Mineralölsteuer;
- Förderung von Entwicklung und Anwendung alternativer Fahrzeug- und Antriebskonzepte (alternative Kraftstoffe, Hybridkonzepte, etc.);
- Förderung des Einbaus von Partikelfiltern bei Neufahrzeugen und von Partikelfiltern oder Partikelkatalysatoren bei Gebrauchtfahrzeugen;
- Dieselpartikelfilter bei land- und forstwirtschaftlichen Geräten;
- Einbau von Dieselpartikelfiltern bzw. Partikelkatalysatoren im Off-Road Bereich;
- Lobbying auf EU-Ebene, um eine möglichst hohe und rasche Absenkung der Emissionsgrenzwerte für Neufahrzeuge zu erreichen;
- Kontrolle der Einhaltung von Emissionsstandards;
- generelle Geschwindigkeitsbeschränkung 80/100 in belasteten Gebieten
- Anpassung der NOVA;
- Strategische Umweltprüfung des Generalverkehrsplanes mit einem hohen Stellenwert für lufthygienische Belange;
- Förderung des Öffentlichen Personenverkehrs;
1. Förderung des Güterverkehrs auf der Schiene;
2. Bewusstseinsbildende Maßnahmen – Informationskampagnen;
3. Koordinierung der Kompetenzen in der Verkehrs- und Raumplanung;
4. rasche Umsetzung der NEC-Strategie.

Derartige Maßnahmen liegen prinzipiell nicht im Zuständigkeitsbereich des Landes. Sowohl auf nationaler als auch internationaler Ebene sollte Lobbyingarbeit betrieben werden und auf eine rasche Umsetzung all dieser Maßnahmen gedrängt werden.

12.3 Anlagen (Industrie, Gewerbe)

Im BAT Reference Dokument „Pulp and Paper“ werden für Laugenkessel nach dem Sulfat Verfahren folgende Werte als BAT (beste verfügbare Technik) definiert:

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>BAT Wert (mg/Nm³, 5 % O₂)</th>
<th>Erreichbarer Emissionswert (mg/Nm³, 5 % O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staub</td>
<td>30 - 50</td>
<td>15</td>
</tr>
<tr>
<td>NOₓ</td>
<td>80 - 120</td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>20 – 100 bzw. 10 – 20 (hoher Trockengehalt der Schwarzlauge)</td>
<td></td>
</tr>
</tbody>
</table>

Die Emissionen der beiden Laugenverbrennungskessel der Mondi Packaging AG liegen im Fall von Staub innerhalb des BAT Wertes bzw. bei einem Kessel in der Nähe des erreichbaren Emissionswertes, im Fall von SO₂ innerhalb des BAT Wertes und im Fall von NOₓ oberhalb des BAT Wertes.

Bei Wirbelschichtkessel ist der Einsatz von Elektrofiltern oder von Gewebefiltern Stand der Technik. Erreichbare Reingas-Konzentrationen liegen im Bereich von 10 – 15 mg/Nm³ (Elektrofilter) bzw. von unter 5 mg/Nm³ (Gewebefilter). Der Wirbelschichtkessel der Frantschach AG ist mit einem Elektrofilter ausgestattet, wobei als Emissionswert 16 mg/Nm³ (basierend auf einer einmaligen Messung) angegeben werden. In einem ersten Schritt sollte die Messhäufigkeit erhöht werden (bei vergleichbaren Anlagen wird in der Regel eine kontinuierliche Messung durchgeführt). Die Entscheidung über mögliche Nachrüstungsmaßnahmen sollte auf Basis der neuen Emissionswerte getroffen werden.
Der Heizkessel der Fa. Offner Holzindustrie, der für den überwiegenden Teil der Emissionen aus Industrie und Gewerbe in der Stadt Wolfsberg verantwortlich war, wurde im Februar 2004 stillgelegt; die Firma bezieht seit diesem Zeitpunkt Fernwärme von der Mondi Packaging AG. Ebenso wurde das Dampfkraftwerk St. Andrä Mitte 2004 in die stille Reserve genommen.

Bei diesen Betrieben sind daher aktuell keine Maßnahmen notwendig.

12.3.1 Maßnahmen im Rahmen des IG-L

In Tirol wurde gemäß §13 eine Verordnung zur Reduktion der Emissionen von Baumaschinen erlassen, siehe dazu Kapitel 12.4.

12.3.2 Maßnahmen außerhalb des IG-L

12.4 Bauwirtschaft

Auf Baustellen können verschiedene Tätigkeiten sowie der Einsatz von Baumaschinen und Aggregaten zu erheblichen Staubemissionen führen.

Da bei diesen Emissionen ein großes Minderungspotential besteht, wurde vom BUWAL für die Schweiz mit 1. September 2002 eine Richtlinie in Kraft gesetzt, welche die Reduktion von Luftschadstoffen auf Baustellen zum Ziel hat [BUWAL, 2002].

Kernpunkte dieser Verordnung sind eine umfangreiche Vorbereitung und Kontrolle bei Großbaustellen44, definierte Anforderungen an mechanische, thermische und chemische Arbeitsprozesse sowie an Maschinen und Geräte. Ein Teil dieser Maßnahmen kann jedoch auch bei kleineren Baustellen angewandt werden.

44 Diese sind in Städten Baustellen, die länger als ein Jahr dauern, mehr als 4000 m2 Fläche beanspruchen und eine Kubatur von mehr als 10.000 m3 haben. In ländlichen Gebieten gelten als Großbaustellen solche mit einer Fläche größer 10.000 m2, einer Kubatur von mehr als 20.000 m3 und mehr als 1,5 Jahre Bauzeit.
Kurzfristig zu realisieren und auch auf kleinere Baustellen anwendbar scheinen demnach u. a. folgende Maßnahmen (siehe auch UMWELTBUNDESAMT (2004c)):

- Einhausungen und Staubbindung zur Vermeidung von Staubfreisetzungen beim Schuttgutumschlag und durch Winderosion.
- Wenn möglich Verwendung von Geräten mit elektrischem Antrieb.
- Regelmäßige Wartung der Fahrzeuge und Geräte.
- Bei öffentlichen Ausschreibungen sind emissionsarme Fahrzeuge zu bevorzugen, die jeweils den aktuellen Abgasvorschriften (Euro 3, Euro 4 etc.) genügen.
- Bei Straßenarbeiten auf die Verwendung von emissionsarmen Bitumen und richtige Verarbeitungstemperatur achten.
- Unterbindung des Schmutzeintrags auf öffentliche Straßen.
- Transport von staubenden Materialien nur in feuchtem Zustand oder abgedeckt.
- Befeuchten unbefestigter Straßen.

In Klagenfurt wird per Bescheid die Anwendung der Schweizer Baurichtlinie auf größeren Baustellen vorgeschrieben.

12.5 Off-Road-Verkehr

hohe spezifische Emissionen

Bei mobilen Quellen in Industrie und Gewerbe, in der Bauwirtschaft sowie in der Land- und Forstwirtschaft wären technische Maßnahmen zur Absenkung der hohen Emissionsfaktoren zu treffen. Die Maßnahmen entsprechen im wesentlichen denjenigen, die auch für mobile Quellen im Rahmen der Bauwirtschaft praktikabel sind.
12.6 Mineralrohstoffwirtschaft

Ein direkter Einfluss von Emissionen aus Schottergruben und Kieswerken auf die PM10-Belastung an den Messstellen ist nicht feststellbar.

12.7 Landwirtschaft

Emissionen der Landwirtschaft aufgrund der Feldbearbeitung und von Schüttgutmanipulationen können einen wesentlichen Beitrag zu den PM10-Emissionen darstellen, sind allerdings derzeit nicht quantifizierbar.

Eine gewisse Rolle kann der Schmutzeintrag auf öffentliche Straßen spielen, der zu einer Erhöhung der Staubbeladung und damit zu einer Erhöhung der Aufwirbelungsemissionen führen kann. Entsprechend sollte der Schmutzeintrag auf öffentliche Straße unterbunden werden.

Zur Verminderung der NH₃-Emissionen, die zur Bildung von sekundären Partikel beitragen, sind u.a. folgende Maßnahmen zielführend (siehe im Detail auch UMWELTBUNDESAMT (2005)):

- Filter- und Wäschereinsatz bei hohen Tierkonzentrationen
- Düngemittelplan und N-Bilanzierung auf Schlagebene zur Optimierung des N-Dünger-Einsatzes
- Geteilte Düngung je nach Vegetationsstand
- Abdeckung der Güllelager
- Mehrphasenfütterung
- Optimierte Gülleausbringung

12.8 Verwendung bestimmter Stoffe, Zubereitungen und Produkte - Maßnahmen im Rahmen des IG-L

12.9 Maßnahmen zur Verminderung der Emissionen der Vorläufersubstanzen sekundärer Aerosole

12.9.1 Maßnahmen zur Verminderung der SO₂-Emissionen

Den größten Beitrag sekundärer Aerosole zur PM10-Belastung in Wolfsberg stellt Sulfat dar, wobei die Daten deutlich zwischen Beiträgen von Quellen am Talboden und erhöhten Quellen unterscheiden lassen.

SO₂ aus der Industrie

SO₂-Emissionen am Talboden tragen zu ca. 10% zur PM10-Belastung in Wolfsberg bei, wovon Industrielle SO₂-Emissionen ca. 50% ausmachen.

Die SO₂-Emissionen des Zellstoffwerkes Mondi Packaging in Frantschach tragen ca. 5 bis 10% zur PM10-Belastung (Ammoniumsulfat) bei. Die Emissionen der Mondi Packaging AG liegen im Fall von SO₂ innerhalb des BAT Wertes, sodass bei den SO₂-Emissionen kein technisch und wirtschaftlich vertretbares Reduktionspotential besteht.

Es sollten jedenfalls alle bedeutenden industriellen SO₂-Emitenten im Lavanttal dem Stand der Technik (BAT) entsprechend betrieben werden.

12.9.2 Maßnahmen zur Verminderung der NOx-Emissionen

NOx aus dem Verkehr

Die bedeutendste Quelle von NOx als Vorläufersubstanz für partikuläres Nitrat stellt der Straßenverkehr dar, auf welchen ca. 75% der NOx-Emissionen am Talboden im Lavanttal entfallen.

Maßnahmen, die zur Verminderung der PM10-Emissionen des Straßenverkehrs gesetzt werden, führen i.d.R. auch zu einer Verringerung der NOx-Emissionen (siehe Kapitel 12.2).

12.9.3 Maßnahmen zur Verminderung der NH₃-Emissionen

12.10 Empfehlungen für weiterführende Untersuchungen

12.10.1 Meteorologie

Die Einrichtung einer Temperaturmessstelle in einem Höhenbereich um 500 m über dem Talboden des Lavanttales wäre sinnvoll, um höher als St. Georgen hinaufreichende Daten des Temperaturprofils im Lavanttal zu gewinnen.
12.10.2 PM10-Messung

Um den Beitrag der Emissionen des Zellstoffwerkes Frantschach, v. a. der primären Partikel, besser einzugrenzen, sollten an der Messstelle Frantschach Zellach gravimetrische und kontinuierliche PM10-Messungen mit PM10-Inhaltsstoffanalysen durchgeführt werden.

Wie die Auswertungen betreffend möglichen Schadstofftransport aus Slowenien in Kapitel 8.13 zeigen, dürfte Transport vom Kraftwerk Šoštanj nach Ostkärnten eher in höheren Luftschichten, nicht am Talboden des Drautales erfolgen. Um die Frage von Ferntransport aus Slowenien (potentielle Quellen sind die großen Kraftwerke Šoštanj und u. U. Trobvlje) präziser klären zu können, sollten gravimetrische PM10-Messungen daher an einem exponierten Standort in Südostkärnten – in St. Georgen oder auf der Soboth – mit PM10-Inhaltsstoffanalysen durchgeführt werden.\footnote{Der im Rahmen des AQUELLA-Projektes untersuchte Standort südöstlich von Lavamünd ist dafür nicht optimal geeignet, da er am Talboden liegt und gegenüber Schadstofftransport aus Großemitten in Slowenien abgeschirmt ist.}

12.10.3 Emissionen

Bei Vorliegen von geeigneten Emissionsfaktoren sollte daher der Emissionskataster um diese Quellgruppen erweitert werden.

Hinsichtlich der Emissionen aus dem Straßenverkehr ist aufgrund der sich laufend ändernden Voraussetzungen (Verkehrsleistung, Fahrzeugflotte, Emissionsfaktoren) eine regelmäßige Aktualisierung empfehlenswert. Für eine Lokalisation von Belastungsschwerpunkten wäre eine höhere räumliche Auflösung als die derzeit verfügbaren Daten auf Zählsprenkelbasis notwendig.

\footnote{Der im Rahmen des AQUELLA-Projektes untersuchte Standort südöstlich von Lavamünd ist dafür nicht optimal geeignet, da er am Talboden liegt und gegenüber Schadstofftransport aus Großemitten in Slowenien abgeschirmt ist.}
Statuserhebung PM10 Wolfsberg – Mögliche Maßnahmen
13 INFORMATIONEN GEMÄß RL 96/62/EG, ANHANG IV

Ort des Überschreitens
Region: Bezirk Wolfsberg (Lavanttal) in Kärnten
Ortschaft: Wolfsberg
Messstation: Wolfsberg Hauptschule

Allgemeine Informationen
Art des Gebietes (Stadt, Industrie- oder ländliches Gebiet):

| Stadt |

Schätzung des verschmutzen Gebietes (km²) und der der Verschmutzung ausgesetzten Bevölkerung:

| Größe des Gebietes: ca. 10 km² |
| Bevölkerung: ca. 20.000 Einwohner |

Zweckdienliche Klimaangaben:

| siehe Kapitel 6. |

Zweckdienliche topographische Daten:

| siehe Kapitel 4. |

Ausreichende Informationen über die Art der in dem betreffenden Gebiet zu schützenden Ziele:

| Die von den Grenzwertüberschreitungen betroffene Messstelle befindet sich im Wohngebiet und dient daher zum Schutz des Menschen. |
| Verhütung von schädlichen Auswirkungen auf die menschliche Gesundheit. |
| Da die Grenzwertüberschreitung 2003 festgestellt wurde, wurden bisher keine Verbesserungsmaßnahmen durchgeführt. Daher stellt die aktuelle Situation die Belastung vor Durchführung der Verbesserungsmaßnahmen dar. |
Zuständige Behörden
Name und Anschrift der für die Ausarbeitung und Durchführung der Verbesserungspläne zuständigen Personen:
Amt der Kärntner Landesregierung
Abteilung 15 – Umweltschutz und Technik
Flatschacherstraße 70
9020 Klagenfurt

Art und Beurteilung der Verschmutzung
in den vorangegangenen Jahren (vor der Durchführung der Verbesserungsmaßnahmen) festgestellte Konzentrationen:
| siehe Kapitel 8 |
seit dem Beginn des Vorhabens gemessene Konzentrationen:
| siehe Kapitel 8 |
angewandte Beurteilungstechnik:
| siehe Kapitel 4 |

Ursprung der Verschmutzung
Liste der wichtigsten Emissionsquellen, die für die Verschmutzung verantwortlich sind (siehe Kapitel 5):
| Raumwärmeerzeugung |
| Straßenverkehr |
| Industrie |
| sonstiger Verkehr |
| Energieumwandlung |
Gesamtmenge der Emissionen aus diesen Quellen (Tonnen/Jahr): 264

Lageanalyse
Einzelheiten über Faktoren, die zu den Überschreitungen geführt haben (Verfrachtung, einschließlich grenzüberschreitende Verfrachtung, Entstehung):
| siehe Kapitel 10. |
Einzelheiten über mögliche Maßnahmen zur Verbesserung der Luftqualität:
| siehe Kapitel 12. |
Angaben zu den bereits vor dem Inkrafttreten dieser Richtlinie durchgeführten Maßnahmen oder bestehenden Verbesserungsvorhaben

örtliche, regionale, nationale und internationale Maßnahmen:

- Da die Grenzwertüberschreitung 2003 festgestellt wurde, wurden bisher keine Verbesserungsmaßnahmen durchgeführt.

festgestellte Wirkungen:

- Da die Grenzwertüberschreitung 2003 festgestellt wurde, wurden bisher keine Verbesserungsmaßnahmen durchgeführt.

Angaben zu den nach dem Inkrafttreten dieser Richtlinie zur Verminderung der Verschmutzung beschlossenen Maßnahmen oder Vorhaben

Auflistung und Beschreibung aller im Vorhaben genannten Maßnahmen:
Zeitplan für die Durchführung:
Schätzung der zu erwartendenVerbesserungder Luftqualitätund der für die Verwirklichung dieser Ziele vorgesehenen Frist:

Angaben zu den geplanten oder langfristig angestrebten Maßnahmen oder Vorhaben

- Maßnahmen werden auf Grundlage dieses Berichtes vom Land Kärnten und der Gemeinde Wolfsberg sowie auf nationaler Ebene zu beschließen sein.

Liste der Veröffentlichungen, Dokumente, Arbeiten usw., die die in diesem Anhang vorgeschriebenen Informationen ergänzen

- siehe Kapitel 14.
14 LITERATUR

http://www.ZAMG.ac.at: Klima-Monatsübersicht, laufend publiziert.

WHO (2004a): Meta-analysis of time-series studies and panel studies of Particulate Matter (PM) and Ozone (O$_3$). WHO Europe.

WINIWARTER, W., TRENKER, C., HÖFLINGER, W., (2001): Österreichische Emissionsinventur für Staub; Studie im Auftrag des Umweltbundesamtes, ARC-S-0151.
Das IG-L legt Grenzwerte zum Schutz der menschlichen Gesundheit für die Luftschadstoffe Schwefeldioxid (SO\textsubscript{2}), Gesamtschwebestaub (TSP), PM10, Stickstoffdioxid (NO\textsubscript{2}), Kohlenstoffmonoxid (CO), Blei im Schwebestaub (Pb), Benzol sowie für den Staubniederschlag und dessen Inhaltsstoffe Blei und Kadmium fest. Für Ozon wurde ein Zielwert festgelegt. Für NO\textsubscript{2} und SO\textsubscript{2} wurden Alarmwerte festgesetzt, für die Schadstoffe PM10 und NO\textsubscript{2} darüber hinaus Zielwerte zum langfristigen Schutz der menschlichen Gesundheit.

In einer Verordnung zum IG-L wurden Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation festgelegt (BGBl. II 298/2001).

Die folgenden Tabellen enthalten die entsprechenden Werte.

Tabelle 42: Immissionsgrenzwerte gemäß IG-L, Anlage 1, zum langfristigen Schutz der menschlichen Gesundheit; gültig seit 7.7.2001

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>Konzentration</th>
<th>Mittelungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO\textsubscript{2}</td>
<td>120 µg/m3</td>
<td>Tagesmittelwert</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>200 µg/m3</td>
<td>Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu 350 µg/m3 gelten nicht als Überschreitung</td>
</tr>
<tr>
<td>TSP</td>
<td>150 µg/m3</td>
<td>Tagesmittelwert (mit 31.12.2004 außer Kraft getreten)</td>
</tr>
<tr>
<td>PM10</td>
<td>50 µg/m3</td>
<td>Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: bis 2004: 35, von 2005 bis 2009: 30, ab 2010: 25</td>
</tr>
<tr>
<td>PM10</td>
<td>40 µg/m3</td>
<td>Jahresmittelwert</td>
</tr>
<tr>
<td>CO</td>
<td>10 mg/m3</td>
<td>Gleitender Achtstundenmittelwert</td>
</tr>
<tr>
<td>NO\textsubscript{2}</td>
<td>200 µg/m3</td>
<td>Halbstundenmittelwert</td>
</tr>
<tr>
<td>NO\textsubscript{2}</td>
<td>30 µg/m3</td>
<td>Jahresmittelwert</td>
</tr>
<tr>
<td></td>
<td>(2002: 55 µg/m3 inkl. Toleranzmarge)</td>
<td></td>
</tr>
<tr>
<td>Des Weiteren gilt der Grenzwert ab 1.1.2012 einzuhalten, die Toleranzmarge beträgt 30 µg/m3 bei Inkrafttreten dieses Gesetzes (d. h. 2001) und wird am 1.1. jedes Jahres bis 1.1.2005 um 5 µg/m3 verringert. Die Toleranzmarge von 10 µg/m3 gilt gleichbleibend von 1.1.2005 bis 31.12.2009. Die Toleranzmarge von 5 µg/m3 gilt gleichbleibend von 1.1.2010 bis 31.12.2011.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzol</td>
<td>5 µg/m3</td>
<td>Jahresmittelwert</td>
</tr>
<tr>
<td>Blei</td>
<td>0,5 µg/m3</td>
<td>Jahresmittelwert</td>
</tr>
</tbody>
</table>
Tabelle 43: Depositionsgrenzwerte gemäß IG-L Anlage 2 zum langfristigen Schutz der menschlichen Gesundheit, gültig seit 1.4.1998

<table>
<thead>
<tr>
<th>Luftschadstoff</th>
<th>Depositionswerte in mg/(m².d) als Jahresmittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staubniederschlag</td>
<td>210</td>
</tr>
<tr>
<td>Blei im Staubniederschlag</td>
<td>0,100</td>
</tr>
<tr>
<td>Cadmium im Staubniederschlag</td>
<td>0,002</td>
</tr>
</tbody>
</table>

Tabelle 44: Immissionszielwert für Ozon gemäß IG-L Anlage 3 zum langfristigen Schutz der menschlichen Gesundheit, gültig seit 1.4.1998

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>Konzentration</th>
<th>Mittelungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>110 µg/m³</td>
<td>Achtstundenmittelwerte über die Zeiträume 0 bis 8 Uhr, 8 bis 16 Uhr, 16 bis 24 Uhr sowie 12 bis 20 Uhr</td>
</tr>
</tbody>
</table>

Tabelle 45: Alarmwerte gemäß IG-L Anlage 4; in Kraft seit 7.7.2001

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>Konzentration</th>
<th>Mittelungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>500 µg/m³</td>
<td>gleitender Dreistundenmittelwert</td>
</tr>
<tr>
<td>NO₂</td>
<td>400 µg/m³</td>
<td>gleitender Dreistundenmittelwert</td>
</tr>
</tbody>
</table>

Tabelle 46: Zielwerte gemäß IG-L Anlage 5; in Kraft seit 7.7.2001

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>Konzentration</th>
<th>Mittelungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>50 µg/m³</td>
<td>Tagesmittelwert; bis zu 7 Tagesmittelwerte über 50 µg/m³ pro Kalenderjahr gelten nicht als Überschreitung</td>
</tr>
<tr>
<td>PM10</td>
<td>20 µg/m³</td>
<td>Jahresmittelwert</td>
</tr>
<tr>
<td>NO₂</td>
<td>80 µg/m³</td>
<td>Tagesmittelwert</td>
</tr>
</tbody>
</table>

Tabelle 47: Grenz- und Zielwerte zum Schutz von Ökosystemen und der Vegetation (BGBl. II 2001/298)

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>Konzentration</th>
<th>Mittelungszeit</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ</td>
<td>30 µg/m³</td>
<td>Jahresmittelwert</td>
<td>Grenzwert</td>
</tr>
<tr>
<td>SO₂</td>
<td>20 µg/m³</td>
<td>Jahresmittelwert und Wintermittelwert</td>
<td>Grenzwert</td>
</tr>
<tr>
<td>NO₂</td>
<td>80 µg/m³</td>
<td>Tagesmittelwert</td>
<td>Zielwert</td>
</tr>
<tr>
<td>SO₂</td>
<td>50 µg/m³</td>
<td>Tagesmittelwert</td>
<td>Zielwert</td>
</tr>
</tbody>
</table>

46 zu berechnen als Summe der Volumensanteile von NO und NO₂, angegeben als NO₂
Freitag, 13. bis Dienstag, 17.12.2002

Wetterlage

In Wolfsberg wehte zumeist sehr schwacher (unter 0,5 m/s) südlicher Wind, der v. a. abends auf Nord drehte. In St. Andrä überwog Wind aus Süd bis Ost (Ostwind v. a. nachmittags, dürfte Hangaufwind der westlichen Talschulter sein). St. Georgen registrierte überwiegend Südostwind, dessen Geschwindigkeit v. a. am 14. und 15.12. bis 4 m/s erreicht.

Immission

Die PM10-Belastung in Wolfsberg betrug am 13.12. 70 µg/m³, stieg am 14.12. auf 80 µg/m³, zwischen 15.12. und 17.12. betrug die Belastung 54-59 µg/m³.

Die zeitliche Variation der TSP-Belastung war relativ gering; Spitzen bis 100 µg/m³ wurden in Wolfsberg und St. Andrä am 13.12. morgens und abends sowie am 14.12. morgens parallel zu erhöhter NO-Konzentration (bis 200 µg/m³) registriert, während sich die vergleichbar hohen NO-Spitzen am 16.12. – vermutlich infolge etwas günstigerer Ausbreitungsbedingungen – nicht in vergleichbaren TSP-Spitzen aufwirkten. Der Rückgang der TSP-Belastung am 15.12. kann einerseits auf die am Sonntag geringeren Emissionen, andererseits auf die etwas günstigeren Ausbreitungsbedingungen zurückgehen.

Die SO₂-Konzentration wies im Lavanttal ein deutlich anderes zeitliches Muster auf als NOx und TSP, mit Spitzen um 30 µg/m³ am 13., 15. bis 17.12. vormittags, die in Wolfsberg ausgeprägter waren als in St. Andrä. Da diese erhöhten Werte bei südlichem Wind auftraten, ist Transport aus Frantschach eher unwahrscheinlich. Um einige Stunden zeitversetzte Spitzen auf der Soboth und in Bleiburg deuten auf großräumigen SO₂-Transport, sehr wahrscheinlich aus Großemittenten in
Slowenien, hin, der bei leichter Labilisierung gegen Mittag den Boden erreichte. Die Messstelle Frantschach registrierte mit Spitzen weit über 100 µg/m³, die zeitlich nicht mit jenen am Talboden zusammen fielen.

Donnerstag, 9. bis Dienstag, 28.1.2003

Wetterlage

um +3°C relativ warm und bei bedecktem Wetter sank die Temperatur nachts kaum ab, es bildete sich nur zeitweise eine Bodeninversion; nur mäßig ungünstig blieben auch in den Nächten ab dem 26.1., als die Morgentemperatur auf –5°C sank, die Ausbreitungsbedingungen.

Die Belastungsepisode wurde am 28.1. beendet, als am frühen Nachmittag die Temperatur in Wolfsberg sprunghaft auf 9°C stieg (bereits vorher waren in Vorhegg 12°C erreicht wurde), der Himmel erstmals klar war und die Windgeschwindigkeit auf – für Wolfsburg ungewöhnliche – 2 m/s stieg.

Immission

Die PM10-Konzentration in Wolfsberg stieg von 9.1. bis zum 15.1. mehr oder weniger kontinuierlich von 52 µg/m³ auf 123 µg/m³ an, ging dann bis zum 19.1. auf 84 µg/m³ zurück um in Folge bis zum 21.1. wieder auf 102 µg/m³ anzusteigen. Danach ging die Belastung wieder zurück, am 27.1. und 28.1. wurden mit 70 bzw. 57 µg/m³ nochmals Tagesmittelwerte über 50 µg/m³ registriert.

Die hohen TSP-Konzentrationen am 11. und 13.1. fallen mit sehr hohen NO-Konzentrationen (13.1. über 250 µg/m³ in Wolfsberg) zusammen und sind lokalen Emissionen zuzuordnen. Dagegen waren die NOx-Konzentrationen am 12.1. vormittags eher mäßig, dafür die SO2-Konzentration (bis 20 µg/m³ in Wolfsberg, 60 µg/m³ in Frantschach) relativ hoch; Transport aus Frantschach ist damit eine Mögliche TSP-Quelle. Ferntransport aus Slowenien ist – bei minimalen SO2-Werten auf der Soboth und in St. Georgen – auszuschließen.

Die NO- und NO2-Konzentration stieg ab 12.1. großflächig an. In Wolfsberg wurden bis 16.1. minimale NO-Konzentrationen (nachmittags und in der zweiten Nachthälfte) um 80 µg/m³, am 17.1. 120 µg/m³ registriert, wobei die Abendspitzen bis zum 17.1. deutlich stärker anstiegen als die Morgenspitzen und 300 µg/m³ überstiegen. Auffallend an der NO2-Belastung war das weitgehende Fehlen von Morgenspitzen und sehr ausgeprägte Abendspitzen um 90 µg/m³. Die minimalen NO2-Konzentrationen (in der zweiten Nachthälfte) lagen um 55 µg/m³.

Die TSP-Konzentration wies in Wolfsberg und St. Andrä bis 17.1. einen ähnlichen Verlauf wie NO2 mit ausgeprägten Abendspitzen und, abgesehen vom 14. und 15.1., keinem deutlichen Anstieg am Morgen auf.

Am 18. und 19.1. ging die NOx- und TSP-Konzentration zurück (NO um 40 µg/m³), was einerseits an den am Samstag und Sonntag niedrigeren Emissionen, zum anderen an den etwas günstigeren Ausbreitungsbedingungen liegen dürfte, da sich in der Nacht 18./19.1. keine Bodeninversion ausbildete.

Sowohl höhere Emissionen am Montag als auch eine Bodeninversion führten am Morgen des 20.1. zu einem raschen Ansteigen der NO-Konzentration, wobei an
den folgenden Tagen die Abendspitzen wieder höher waren (bis 300 µg/m³) als die Morgenspitzen, noch ausgeprägter war dieses Verhalten bei NO₂. Die TSP-Belastung wies einen relativ strukturlosen Verlauf auf. Sie ging am 21.1. morgens – ebenso wie NO₂, aber stärker – zurück, möglicherweise im Zusammenhang mit einsetzender Erwärmung auch am Talboden.

Am Sonntag 26.1. ging die NO-Konzentration im Lavanttal wieder stark zurück, NO₂ weniger, bei TSP ist keine Veränderung zu erkennen. Die NO₂-Konzentration stieg ab Montag 27.1. wieder an, ebenso TSP, wobei am 27. und 28.1., anders als an den Tagen zuvor, deutlich Spitzen am Nachmittag in Wolfsberg und St. Andrä, aber auch in Klagenfurt auftraten. Nachdem diese Spitzen mit etwas erhöhten SO₂-Konzentrationen zusammen fielen, wäre als Ursache erhöhter TSP-Belastung einmischen sulfatreicher Luft aus größerer Höhe denkbar (siehe SPANGL & NAGL (2003a)).

Am Nachmittag des 28.1. ging die TSP-Belastung an allen Kärntner Messstellen rasch zurück, wobei kurzzeitig Konzentrationen nahe null auftraten.

Freitag, 14. und Samstag, 15.2.2003

Wetterlage

Der 14. und 15.2. waren im Lavanttal sonnige Tage; die Temperatur lag in Wolfsberg morgens bei −10 bzw. −11°C, maximal erreichte sie −1 bzw. +1°C. Nachts bildete sich jeweils eine Bodeninversion, nachmittags bestand leicht labile Temperaturschichtung.

Im Lavanttal wehte am 14. und 15.2. überwiegend Südwind (bis 1 m/s), der nachts auf Nord drehte, d. h. es bildete sich bei klarem Wetter eine Talwindzirkulation aus.

Immission

Am 14.2. betrug die PM10-Belastung in Wolfsberg 61 µg/m³, am 15.2. 55 µg/m³. Die NOx- und TSP-Konzentration wies am 14.2. morgens eine sehr ausgeprägte Spitze auf, die – bei ähnlich ungünstigen Ausbreitungsbedingungen am 15.2. – fehlte, da die Emissionen am Sonntag niedrig waren. Am 14.2. wurden abends bis in die Nacht sehr hohe NO₂-konzentrationen (bis 100 µg/m³ in St. Andrä) registriert, dagegen kaum erhöhte TSP-Konzentrationen. TSP und NO₂ bzw. NO wiesen auch am 15.2. keinen parallelen Verlauf auf. Während die NO₂-Konzentration im Verlauf des Sonntags etwas zurückging, blieb die TSP-Belastung hoch.

Mit etwas günstigeren Ausbreitungsbedingungen ging am 16.2. die NO₂- und TSP-Belastung zurück.
Dienstag, 18. bis Samstag, 22.2.2003

Wetterlage

Im Lavanttal wehte überwiegend Südwind mit unter 1 m/s, der nachts auf Nord drehte, d. h. es bildete sich eine Talwindzirkulation aus.

Immission

Die PM10-Konzentration in Wolfsberg betrug am 18.2. 66 µg/m³, stieg am 19.2. auf 104 µg/m³, in den darauf folgenden Tagen betrug die PM10-Belastung 71, 82 bzw. 59 µg/m³.

Die TSP-Konzentration wies ausgeprägte Tagesgänge mit Spitzen morgens und abends auf, die mit erhöhten NO- und NO₂-Konzentrationen parallel gingen. Daher lässt sich die erhöhte TSP-Belastung lokal Emissionen zuordnen.

Montag, 24.2. bis Montag, 3.3.2003

Wetterlage

Ab 20.2. bestand eine stabile Hochdrucklage (s.o.). Am 27.2. wanderte das Hoch „Helga“ nach Zentralrussland ab, Mitteleuropa blieb in einem Bereich flacher Luftdruckverteilung. Am 1.3. drang ein hochreichendes kleinräumiges Tief bis Polen vor, und Mitteleuropa geriet in einen Bereich mit Südwestströmung, die an den folgenden Tagen mildere Luftmassen heranführte. Eine okkludierte Frontalzone erreichte am 3.3. von Westen Österreich, sie brachte intensiven Regen.

47 Bezeichnung der Tief- und Hochdruckgebiete durch das Institut für Meteorologie der Universität Berlin
Bei sonnigem Wetter bildete sich über dem Lavanttal eine Talwindzirkulation aus, die Windgeschwindigkeit lag in Wolfsberg nachts unter 0,3 m/s, über Mittags stieg sie bis 1 m/s, am 27.2. sogar bis 3 m/s.

Die täglichen Temperaturamplituden waren sehr hoch; die morgendliche Minimumtemperatur stieg in Wolfsberg von 24. bis 1.3. von –8 auf –4°C, die Tageshöchsttemperatur von +6 auf +11°C. Ab 2.3. stieg bei etwas stärkerer Bewölkung die Minimumtemperatur an (+2°C am 3.3. morgens) und sank die Tageshöchsttemperatur auf 8°C am 3.3.

Nachts bildete sich stets eine Bodeninversion aus (unterhalb St. Georgen), in größerer Höhe (bis Gerlitzen) bestand bis 2.3. mittags stabile Schichtung. Am 3.3. stieg nachmittags die Temperatur in Wolfsberg kurzzeitig an, die Bewölkung ging zurück, der Wind frischte bis 2 m/s auf.

Immission

Während dieser Episode betrug die PM10-Konzentration in Wolfsberg zwischen 51 und 62 µg/m³, sie war damit verglichen mit den vorangegangenen Episoden relativ niedrig.

Die TSP-Belastung zeigte deutliche Tagesgänge mit erhöhten Konzentrationen morgens und abends, wobei die Morgenspitze bis 27.2. deutlicher ausgeprägt war als jene am Abend. Der TSP-Verlauf folgte jenem von NO und NO₂. Erhöhte SO₂-Konzentrationen im Lavanttal am 25. und 26.2. mittags fielen nicht mit erhöhten TSP-Konzentrationen zusammen.

Am 3.3. ging die TSP-Konzentration über Mittag nicht zurück. Die Temperatur-, aber auch die NO-Daten deuten darauf hin, dass sich die Bodeninversion nicht auflöste, sondern seichter wurde, sodass stärkere Schadstoffanreicherung in einer flachen bodennahen Schicht stattfand. Die Erwärmung in Wolfsberg, die mit dem o. g. Frontdurchgang in Verbindung stehen dürfte, brachte dann um ca. 20:00 einen raschen Rückgang der TSP-, NO- und NO₂-Konzentration.

Donnerstag, 6. bis Samstag, 8.3.2003

Nach dem 3.3. bildete sich wieder flache Druckverteilung am Boden aus, während in größerer Höhe starke Nordnordwestströmung herrschte und ein Höhentief über Polen lag. Das Ende der Inversionslage brachte eine okkludierte Front, die am 8.3. Mitteleuropa überquerte und ca. um 12:00 einen rapiden Anstieg der Ozon-Konzentration bewirkte.

Bei mäßiger Bewölkung pendelte die Temperatur in Wolfsberg bis 8.3. morgens zwischen –1 und +6°C, am sonnigeren 8.3. stieg sie bis 10°C. Die Temperaturschichtung war bis in die Nacht 7./8.3. neutral, am Morgen des 8.3. bildete sich eine Bodeninversion, ebenso in der folgenden Nacht.

Der sehr schwache Wind kam überwiegend aus südlicher Richtung, die Geschwindigkeit lag meist unter 0,3 m/s, über Mittag stieg sie bis 0,6 m/s. Ein ausgeprägter Richtungswechsel zwischen Talein- und Talauswind ist nur am 8.3. festzustellen.

Immission

Die PM10-Belastung betrug in Wolfsberg während dieser kurzen Episode am 6.3. 66 µg/m³, am 7.3. 94 µg/m³ und am 8.3. 52 µg/m³.

Die TSP-Belastung wies von 6. bis 8.3. einen relativ strukturlosen Verlauf auf, am 6. und 8.3. zeichnen sich ausgeprägtere Morgenmaxima ab.
Deutliche Tagesgänge zeigte die NOx-Belastung, wobei bei NO die Morgenspitzen wesentlich ausgeprägter waren als jene am Abend, bei NO₂ hingegen umgekehrt.

Die SO₂-Belastung war am 6. und 7.3. längerfristig und großräumig – im gesamten Bereich von der Soboth bis Vorhegg – etwas erhöht und erreichte in Wolfsberg 10 bis 20 µg/m³, was auf Transport aus Slowenien hindeutet. Der relativ strukturlose Konzentrationsverlauf bei TSP könnte damit die Folge von Transport primären Staubes oder sekundär gebildeten Sulfates aus Slowenien gewesen sein.

Mittwoch, 26. bis Samstag, 29.3.2003

Wetterlage

Im Lavanttal war es durchwegs sonnig, die Temperatur zeigte große Tagesamplituden. Die morgendliche Tiefsttemperatur lag in Wolfsberg um 3°C, die Tageshöchsttemperatur um 19°C. Nachts bildete sich jeweils eine Bodeninversion aus, tagsüber bestand labile Temperaturschichtung.

Im Lavanttal bildete sich eine gut ausgeprägte Talwindzirkulation mit Südwind tagsüber und Nordwind nachts auf; die Windgeschwindigkeit lag nachts unter 0,3 m/s und stieg tagsüber bis 1,5 m/s.

Immission

Die PM10-Belastung betrug am 26.3. 52 µg/m³, stieg dann am 27.3. auf 60 µg/m³, am 29.3 auf 72 µg/m³ um am 29.3. auf 59 µg/m³ abzusinken.

Die TSP-Belastung wies von 26. bis 29.3. relativ ausgeprägte Morgenmaxima parallel zu erhöhter NO- und NO₂-Konzentration und weniger ausgeprägte Abendmaxima auf. Bei NO waren die Konzentrations spitzen morgens deutlich höher als abends, bei NO₂ umgekehrt.

Am 28.3. ging die TSP-Konzentration über Mittag trotz günstiger Ausbreitungsbedingungen nicht zurück, sondern stieg bis um 100 µg/m³. Möglicherweise spielte dabei Einmischen von Staub aus höheren Luftschichten eine Rolle. Etwas eigenartig war an diesem Tag der SO₂-Konzentrationsverlauf mit einem raschen Anstieg um ca. 17:00, als die TSP-Konzentration rasch fiel. Der räumlich einheitliche SO₂-Anstieg mit den höchsten Konzentrationen auf der Soboth (60 µg/m³) deutet klar auf Transport aus Slowenien hin; die SO₂- und TSP-Konzentration wiesen mithin einen klar gegenläufigen Verlauf auf.

Freitag, 14. bis Sonntag, 16.11.2003

Wetterlage

Bei eher nebeligem Wetter traten im Lavanttal bis 16.11. morgens nur geringe Temperaturamplituden auf. Die Morgentemperatur lag in Wolfsberg um 0°C, die Tageshöchstwerte bis 15.11. um 6°C, am 16.11. bei 9°C. Nachts bildete sich stets eine ausgeprägte Bodeninversion aus, tagsüber leicht labile Temperaturschichtung.

In Wolfsberg wehte überwiegend südlicher Wind, der nachts zeitweise auf Nord drehte, während in St. Georgen sich ab der Nacht 14./15.11. Nordwestwind einstellte.

Immission

Die PM10-Konzentration betrug am 14.11. 59 µg/m³, am 15.11. 64 µg/m³ und am 16.11. 51 µg/m³.

Die TSP-Konzentration wies einen relativ strukturlosen Verlauf auf; sie ging (außer am 14.11.) über mittags – bei günstigeren Ausbreitungsbedingungen – etwas zurück. Morgendliche Konzentrationsspitzen, die bei NO sehr ausgeprägt waren, zeichnen sich bei TSP vergleichsweise schwach ab.

Am 14.11. trat über Mittag ein markantes SO₂-Ferntransportereignis mit zeitgleichem Konzentrationsanstieg in ganz Ostkärnten auf, wobei in St. Georgen bis 60 µg/m³ gemessen wurden. Gleichzeitig sind keine erhöhten TSP-Konzentrationen zu verzeichnen.

mittwoch, 10. bis sonntag, 14.12.2003

Wetterlage

In Wolfsberg wehte überwiegend südlicher Wind unter 0,3 m/s, der in der Nacht 10./11. und, länger, 11./12.12. auf Nord bis Nordwest drehte. In St. Georgen überwiegend Nordwestwind.

Immission

Die PM10-Belastung betrug in Wolfsberg am 10.12. 56 µg/m³, stieg am 11.12. auf 78 µg/m³ bzw. auf 73 µg/m³ am 12.12., sie betrug am 13.12. 65 µg/m³ und am 14.12. 57 µg/m³.

Die TSP-Belastung zeigte im Lavanttal relativ ausgeprägte Tagesgänge mit erhöhten Werten morgens und abends, wobei die Abendmaxima höher ausfielen – was während dieser Episode auch bei NO (mit starken Tagesgängen) ebenfalls der Fall war. Dagegen wies NO₂ relativ flache Tagesverläufe mit erhöhten Konzentrationen tagsüber auf, die jenen von SO₂ (mit Konzentrationen bis
10 µg/m³) parallel liefen. Am Sonntag 14.12. ging zwar die NOx-Konzentration markant zurück, nicht aber TSP.

18. bis 20.12.2003

Wetterlage

Bei überwiegend sonnigem Wetter lagen die Morgen-temperaturen in Wolfsberg um –6°C, die Tagesmaxima um +2°C. Nachts bildete sich jeweils eine starke hochreichende Inversion aus (St. Georgen um –4°C, Gerlitzen um –2°C).

Immission

Die PM10-Konzentration betrug am 18.12. 63 µg/m³, am 19.12. 65 µg/m³ und am 20.12. 55 µg/m³.

Die TSP-Konzentration wies – ebenso wie NO₂ und SO₂ – ausgeprägte Tagesgänge mit erhöhten Werten tagsüber und niedrigeren Werten nachts auf. Die TSP-Belastung wies damit ein deutlich anderes zeitliches Muster auf als NO mit hohen Spitzen morgens und abends (weit über 300 µg/m³).

26. bis 30.12.2003

Wetterlage

In Wolfsberg bildete sich bis in die Nacht 28/29.12. eine Talwindzirkulation aus, die Windgeschwindigkeit lag zumeist unter 0,2 m/s. Am 29.12. frischte der Wind bis 1 m/s auf und drehte auf Nordwest. In St. Georgen wehte bis 27.12. Nordwestwind, danach Südostwind.

Immission

Am 26.12. betrug die PM10-Konzentration 60 µg/m³, sie stieg am nächsten Tag auf 85 µg/m³, am 28.12. betrug sie 73 µg/m³, am 29.12. war sie mit 48 µg/m³ knapp unterhalb des Grenzwertes, am 30.12. mit 51 µg/m³ knapp oberhalb.

Die TSP-Konzentration war ebenso wie NO₂ tagsüber deutlich höher als nachts, allerdings traten keine Morgen- und Abendspitzen wie bei NO auf.

Für die erhöhte TSP- und NO₂-Belastung dürfte damit Schadstoffanreicherung im ganzen Lavanttal bei tagsüber erhöhten Emissionen verantwortlich gewesen sein. der Rückgang der Belastung nachts könnte damit in Zusammenhang stehen, dass die Inversion sehr hochreichend war und somit großräumige Schadstoffanreicherung forciert wurde. Die erhöhten SO₂-Konzentrationen in Wolfsberg am Vormittag könnten auf Hausbrandemissionen zurückgehen.

Ab 29.12. ging die TSP-Belastung infolge etwas günstigerer Ausbreitungsbedingungen zurück.

7. bis 11.1.2004

Wetterlage

Mit Ausnahme des 7.1. war es in Kärnten durchwegs nebelig. Die Temperatur erreichte am 7.1. mittags +1°C, am folgenden Morgen sank sie in Wolfsberg auf –9°C; die folgenden Tage wiesen nur geringe Tagesamplituden auf, bis 10.1. stieg die Temperatur in Wolfsberg bis +1°C. Nachts bildete sich über dem Lavanttal stets eine Inversion, tagsüber neutrale Schichtung. Im Höhenbereich bis zum Magdalensberg war die Temperaturschichtung leicht stabil.

In Wolfsberg wehte überwiegend südlicher Wind um 0,5 m/s, in der Nacht 10./11.1. drehte er auf Nordwest.

Immission

Die PM10-Belastung betrug am 7.1. 70 µg/m³, am 8.1. 78 µg/m³, am 9.1. 104 µg/m³, am 10.1. 74 µg/m³ und am 11.1. 61 µg/m³.

Die niedrige SO₂-Belastung wies einen ähnlichen Verlauf wie NO auf und wurde somit von lokalen Quellen bestimmt.

Freitag 30.1. bis Samstag 7.2.2004

Wetterlage

Im Lavanttal war es bis 3.2. durchwegs sonnig, sodass die Temperatur hohe Tagesamplituden aufwies. Die Morgenstemperatur stieg in Wolfsberg von 30.1. bis 3.2. von –12°C auf 0°C, die Tageshöchsttemperatur von 0°C auf +8°C. Der 4.2. war bewölkter, die Tageshöchsttemperatur ging auf 5°C zurück, um an den folgenden sonnigen Tagen bis 8.2. wieder auf +10°C zu steigen.

Nachts bildeten sich jeweils sehr massive Bodeninversionen aus, über Mittag neutrale Schichtung. Da die Erwärmung in größerer Höhe (Göriach bis Gerlitzen) stärker ausfiel als am Talboden (so stieg die Temperatur am Magdalensberg von –6°C am 31.1. morgens auf +6°C am 3.2. morgens und 14°C am 5.2. mittags) bildete sich eine hochreichend stabile Temperatschichtung aus mit sehr massiven nächtlichen Inversionen; von 2. bis 6.2. bestand auch tagsüber zwischen Göriach und Magdalensberg eine massive abgehobene Inversion.

Am 7.2. ging die Temperatur zunächst in höheren Niveaus stark zurück (Gerlitzen 6.2. abends +6°C, 7.2. abends –4°C), in Wolfsberg wurden nachmittags 9°C erreicht. Die abgehobene Inversion verschwand damit. Stärkere Erwärmung am Talboden am 7.2. nachmittags löste auch zeitweise die Bodeninversion auf.

In Wolfsberg bildete sich eine Talwindzirkulation mit einer relativ kurzen nächtlichen Nordwindphase aus. Die Windgeschwindigkeit lag meist unter 0,5 m/s. In St. Georgen wehte dagegen fast durchgehend Nordwestwind.

Immission

Die PM10-Belastung betrug am 30.1. 66 µg/m³, am 31.1. 62 µg/m³, am 1.2. 61 µg/m³, am 2.2. 78 µg/m³, am 3.2. 79 µg/m³, am 4.2. 84 µg/m³, am 5.2. 72 µg/m³, am 6.2. 63 µg/m³ und am 7.2. 58 µg/m³.
Relativ ausgeprägte Tagesgänge mit hohen Spitzen am Morgen (um 140 µg/m³) kennzeichneten die TSP-Belastung in Wolfsberg und St. Andrä (sowie Klagenfurt) am 30. und 31.1., während an den folgenden Tagen die Abendmaxima ausgeprägter waren (2,2 bis 200 µg/m³). Die TSP-Belastung folgte damit bis 31.1. jener von NO (hohen NO-Spitzen um 140 µg/m³ bis 1,2., danach über 300 µg/m³), danach jener von NO₂. Während die NO-Konzentration am Sonntag 1,2. zurückging, zeigte die NO₂- und TSP-Belastung keinen nennenswerten Rückgang.

Die NO₂-Konzentration stieg in Wolfsberg jeweils tagsüber an (Maxima um 20 µg/m³, am 6,2. 40 µg/m³) und wies einen ähnlichen Verlauf wie NO₂ auf. Hausbrandemissionen, möglicherweise Transport aus Frantschach war die Hauptquelle von SO₂. Transport aus Slowenien ist auszuschließen.

Die Konzentration aller Schadstoffe ging am 7.2. abends mit zeitweiser Labilisierung zurück, am stärksten NO und TSP, SO₂ am wenigsten.

Donnerstag 25. bis Montag 29.11.2004

Wetterlage

Ab 24.11. etablierte sich ein Hoch mit Kern über Mitteleuropa, das sich an den folgenden Tagen nach Südosten verlagerte. Während ab 26.11. maritime Luftmassen mit zügiger Westströmung immer weiter nach Mitteleuropa vordrangen, blieb der Südosten Österreichs im Einflussbereich dieses Hochs.

Im Lavanttal wehte durchwegs sehr schwacher Wind, in St. Georgen zumeist aus Nordwest, in Wolfsberg nachts überwiegend aus Nord, tagsüber aus Süd.

Bis 28.11. morgens war das Wetter meist wolkenlos. Nachts bildete sich eine massive Bodeninversion aus, die Morgen- und Abendtemperatur lag in St. Andrá um -8°C, tagsüber erreichte sie bis 26.11. +8°C, danach sank sie auf +2°C. Die Temperaturschichtung war, abgesehen von den Nachmittagen, hochreichend stabil; auf der Gerlitzen stieg die Temperatur von 25. bis 26.11. von +5 auf +4°C; in den folgenden Tagen sank sie wieder auf um -2°C, allerdings blieb die Schichtung stabil. In der Nacht 28./29.11. bildete sich keine Bodeninversion, die Temperatur blieb im Lavanttal bei -2°C.

Immission

Die PM10-Belastung war mit 51 µg/m³ am 25.11. nur knapp über dem Grenzwert, am 26.11. betrug sie 71 µg/m³, am 27.11. 80 µg/m³, am 28.11. 77 µg/m³ und am 29.11. stieg sie auf 96 µg/m³.

Die Immissionskonzentration wies das übliche zeitliche Muster bei hochreichend stabiler Temperaturschichtung auf. Bei NO traten markante Morgen- und Abendspitzen auf, während NO₂ und TSP tagsüber erhöhte Konzentrationen mit einem nur geringfügigen Rückgang am Nachmittag und einem deutlichen Maximum am Abend aufwiesen.

Der 28.11. mit etwas günstigeren Ausbreitungsbedingungen in Bodennähe wies eine geringere TSP- und NOx-Belastung auf, wofür auch die geringeren sonntäglichen Emissionen verantwortlich sein dürften.

Die PM10-Konzentration stieg in Wolfsberg im Lauf der Tage ungleichmäßig an und erreichte am 29.11. mit 96 µg/m³ den höchsten TMW. In Lavamünd und Gurtschitschach war die PM10-Konzentration um 30 bis 40 µg/m³ niedriger als in Wolfsberg.
Der Konzentrationsverlauf von SO$_2$ war überall relativ strukturlos und deutet in keiner Weise auf Transport aus Slowenien hin.

Donnerstag 23. bis Samstag 25.12. 2004

Wetterlage

Die Temperaturverhältnisse waren von einer massiven hochreichenden Inversion gekennzeichnet; am Morgen lag die Temperatur am Talboden des Lavanttales um -8°C, in Goriach um -1°C und auf dem Magdalensberg erreichte sie bis +4°C. Am frühen Nachmittag labilierte sich die Talatmosphäre kurzzeitig.

Im Lavanttal bildete sich eine Talwindzirkulation mit Geschwindigkeiten unter 1 m/s aus.

Immission

Die PM10-Konzentration betrug am 23.12. 63 µg/m³, am 24.12. 66 µg/m³ und am 25.12. 62 µg/m³.

Die NOx- und TSP-Konzentration wies einen für hochreichende Inversionslagen typischen Verlauf auf.

Die SO$_2$-Konzentration war niedrig und gibt ebenso wie die PM10-Konzentration in Lavamünd keinen Hinweis auf PM10-Transport aus Slowenien.
ANHANG 3: TAGESMITTELWERTE DER PM10-KONZENTRATION, 2003

PM10-Konzentration in Wolfsberg, St. Andrä und Magersdorf, 2003, µg/m³

<table>
<thead>
<tr>
<th>Wolfsberg</th>
<th>St. Andrä</th>
<th>Magersdorf</th>
<th>Wolfsberg</th>
<th>St. Andrä</th>
<th>Magersdorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01.03</td>
<td>27</td>
<td></td>
<td>14.02.03</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>02.01.03</td>
<td>36</td>
<td></td>
<td>15.02.03</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>03.01.03</td>
<td>39</td>
<td></td>
<td>16.02.03</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>04.01.03</td>
<td>58</td>
<td></td>
<td>17.02.03</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>05.01.03</td>
<td>30</td>
<td></td>
<td>18.02.03</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>06.01.03</td>
<td>23</td>
<td></td>
<td>19.02.03</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>07.01.03</td>
<td>27</td>
<td></td>
<td>20.02.03</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>08.01.03</td>
<td>44</td>
<td></td>
<td>21.02.03</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>09.01.03</td>
<td>52</td>
<td></td>
<td>22.02.03</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>10.01.03</td>
<td>67</td>
<td></td>
<td>23.02.03</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>11.01.03</td>
<td>53</td>
<td></td>
<td>24.02.03</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>12.01.03</td>
<td>56</td>
<td></td>
<td>25.02.03</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>13.01.03</td>
<td>95</td>
<td></td>
<td>26.02.03</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>14.01.03</td>
<td>111</td>
<td></td>
<td>27.02.03</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>15.01.03</td>
<td>123</td>
<td></td>
<td>28.02.03</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>16.01.03</td>
<td>108</td>
<td></td>
<td>01.03.03</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>17.01.03</td>
<td>119</td>
<td></td>
<td>02.03.03</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>18.01.03</td>
<td>93</td>
<td></td>
<td>03.03.03</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>19.01.03</td>
<td>84</td>
<td></td>
<td>04.03.03</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>20.01.03</td>
<td>99</td>
<td></td>
<td>05.03.03</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>21.01.03</td>
<td>109</td>
<td></td>
<td>06.03.03</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>22.01.03</td>
<td>102</td>
<td></td>
<td>07.03.03</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>23.01.03</td>
<td>85</td>
<td></td>
<td>08.03.03</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>24.01.03</td>
<td>53</td>
<td></td>
<td>09.03.03</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>25.01.03</td>
<td>48</td>
<td></td>
<td>10.03.03</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>26.01.03</td>
<td>41</td>
<td></td>
<td>11.03.03</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>27.01.03</td>
<td>70</td>
<td></td>
<td>12.03.03</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>28.01.03</td>
<td>57</td>
<td></td>
<td>13.03.03</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>29.01.03</td>
<td>45</td>
<td></td>
<td>14.03.03</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>30.01.03</td>
<td>64</td>
<td></td>
<td>15.03.03</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>31.01.03</td>
<td>21</td>
<td></td>
<td>16.03.03</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>01.02.03</td>
<td>14</td>
<td></td>
<td>17.03.03</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>02.02.03</td>
<td>34</td>
<td></td>
<td>18.03.03</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>03.02.03</td>
<td>62</td>
<td></td>
<td>19.03.03</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>04.02.03</td>
<td>64</td>
<td></td>
<td>20.03.03</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>05.02.03</td>
<td>22</td>
<td></td>
<td>21.03.03</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>06.02.03</td>
<td>31</td>
<td></td>
<td>22.03.03</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>07.02.03</td>
<td>41</td>
<td></td>
<td>23.03.03</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>08.02.03</td>
<td>49</td>
<td></td>
<td>24.03.03</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>09.02.03</td>
<td>39</td>
<td></td>
<td>25.03.03</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>10.02.03</td>
<td>66</td>
<td></td>
<td>26.03.03</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>11.02.03</td>
<td>63</td>
<td></td>
<td>27.03.03</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>12.02.03</td>
<td>32</td>
<td></td>
<td>28.03.03</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>13.02.03</td>
<td>43</td>
<td></td>
<td>29.03.03</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>30.03.03</td>
<td>Wolfsberg</td>
<td>43</td>
<td>St. Andrä</td>
<td>35</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>31.03.03</td>
<td>Wolfsberg</td>
<td>35</td>
<td>St. Andrä</td>
<td>21</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>01.04.03</td>
<td>Wolfsberg</td>
<td>38</td>
<td>St. Andrä</td>
<td>35</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>02.04.03</td>
<td>Wolfsberg</td>
<td>38</td>
<td>St. Andrä</td>
<td>24</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>03.04.03</td>
<td>Wolfsberg</td>
<td>38</td>
<td>St. Andrä</td>
<td>26</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>04.04.03</td>
<td>Wolfsberg</td>
<td>35</td>
<td>St. Andrä</td>
<td>29</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>05.04.03</td>
<td>Wolfsberg</td>
<td>35</td>
<td>St. Andrä</td>
<td>30</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>06.04.03</td>
<td>Wolfsberg</td>
<td>11</td>
<td>St. Andrä</td>
<td>35</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>07.04.03</td>
<td>Wolfsberg</td>
<td>13</td>
<td>St. Andrä</td>
<td>35</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>08.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>38</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>09.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>19</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>10.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>18</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>11.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>24</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>12.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>28</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>13.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>76</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>14.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>36</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>15.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>40</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>16.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>36</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>17.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>27</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>18.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>32</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>19.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>65</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>20.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>27</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>21.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>36</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>22.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>38</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>23.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>33</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>24.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>29</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>25.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>20</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>26.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>28</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>27.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>32</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>28.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>31</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>29.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>23</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>30.04.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>26</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>01.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>23</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>02.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>28</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>03.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>34</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>04.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>25</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>05.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>26</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>06.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>33</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>07.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>30</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>08.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>22</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>09.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>22</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>10.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>22</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>11.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>22</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>12.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>15</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>13.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>18</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>14.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>17</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>15.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>15</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>16.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>19</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>17.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>23</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>18.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>28</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>19.05.03</td>
<td>Wolfsberg</td>
<td>19</td>
<td>St. Andrä</td>
<td>28</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>Wolfsberg</td>
<td>St. Andrä</td>
<td>Magersdorf</td>
<td>Wolfsberg</td>
<td>St. Andrä</td>
<td>Magersdorf</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>10.07.03</td>
<td>25</td>
<td></td>
<td>30.08.03</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>11.07.03</td>
<td>27</td>
<td></td>
<td>31.08.03</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12.07.03</td>
<td>29</td>
<td></td>
<td>01.09.03</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>13.07.03</td>
<td>24</td>
<td></td>
<td>02.09.03</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>14.07.03</td>
<td>24</td>
<td></td>
<td>03.09.03</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>15.07.03</td>
<td>29</td>
<td></td>
<td>04.09.03</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>16.07.03</td>
<td>41</td>
<td></td>
<td>05.09.03</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>17.07.03</td>
<td>31</td>
<td></td>
<td>06.09.03</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>18.07.03</td>
<td>18</td>
<td></td>
<td>07.09.03</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>19.07.03</td>
<td>23</td>
<td></td>
<td>08.09.03</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>20.07.03</td>
<td>25</td>
<td></td>
<td>09.09.03</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>21.07.03</td>
<td>30</td>
<td></td>
<td>10.09.03</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>22.07.03</td>
<td>28</td>
<td></td>
<td>11.09.03</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23.07.03</td>
<td>18</td>
<td></td>
<td>12.09.03</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>24.07.03</td>
<td>24</td>
<td></td>
<td>13.09.03</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>25.07.03</td>
<td>17</td>
<td></td>
<td>14.09.03</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>26.07.03</td>
<td>24</td>
<td></td>
<td>15.09.03</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>27.07.03</td>
<td>26</td>
<td></td>
<td>16.09.03</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>28.07.03</td>
<td>17</td>
<td></td>
<td>17.09.03</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>29.07.03</td>
<td>13</td>
<td></td>
<td>18.09.03</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>30.07.03</td>
<td>21</td>
<td></td>
<td>19.09.03</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>31.07.03</td>
<td>23</td>
<td></td>
<td>20.09.03</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>01.08.03</td>
<td>21</td>
<td></td>
<td>21.09.03</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>02.08.03</td>
<td>24</td>
<td></td>
<td>22.09.03</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>03.08.03</td>
<td>26</td>
<td></td>
<td>23.09.03</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>04.08.03</td>
<td>31</td>
<td></td>
<td>24.09.03</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>05.08.03</td>
<td>38</td>
<td></td>
<td>25.09.03</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>06.08.03</td>
<td>40</td>
<td></td>
<td>26.09.03</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>07.08.03</td>
<td>34</td>
<td></td>
<td>27.09.03</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>08.08.03</td>
<td>36</td>
<td></td>
<td>28.09.03</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>09.08.03</td>
<td>33</td>
<td></td>
<td>29.09.03</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>10.08.03</td>
<td>32</td>
<td></td>
<td>30.09.03</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>11.08.03</td>
<td>34</td>
<td></td>
<td>01.10.03</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>12.08.03</td>
<td>32</td>
<td></td>
<td>02.10.03</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>13.08.03</td>
<td>37</td>
<td></td>
<td>03.10.03</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>14.08.03</td>
<td>41</td>
<td></td>
<td>04.10.03</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>15.08.03</td>
<td>23</td>
<td></td>
<td>05.10.03</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>16.08.03</td>
<td>19</td>
<td></td>
<td>06.10.03</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>17.08.03</td>
<td>15</td>
<td></td>
<td>07.10.03</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>18.08.03</td>
<td>27</td>
<td></td>
<td>08.10.03</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>19.08.03</td>
<td>21</td>
<td></td>
<td>09.10.03</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20.08.03</td>
<td>19</td>
<td></td>
<td>10.10.03</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>21.08.03</td>
<td>26</td>
<td></td>
<td>11.10.03</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>22.08.03</td>
<td>28</td>
<td></td>
<td>12.10.03</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>23.08.03</td>
<td>27</td>
<td></td>
<td>13.10.03</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>24.08.03</td>
<td>25</td>
<td></td>
<td>14.10.03</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>25.08.03</td>
<td>25</td>
<td></td>
<td>15.10.03</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>26.08.03</td>
<td>25</td>
<td></td>
<td>16.10.03</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>27.08.03</td>
<td>28</td>
<td></td>
<td>17.10.03</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>28.08.03</td>
<td>31</td>
<td></td>
<td>18.10.03</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>29.08.03</td>
<td>27</td>
<td></td>
<td>19.10.03</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wolfsberg</td>
<td>St. Andrä</td>
<td>Magersdorf</td>
<td></td>
<td>Wolfsberg</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>20.10.03</td>
<td>57</td>
<td></td>
<td></td>
<td>10.12.03</td>
<td>56</td>
</tr>
<tr>
<td>21.10.03</td>
<td>32</td>
<td></td>
<td></td>
<td>11.12.03</td>
<td>78</td>
</tr>
<tr>
<td>22.10.03</td>
<td>31</td>
<td></td>
<td></td>
<td>12.12.03</td>
<td>73</td>
</tr>
<tr>
<td>23.10.03</td>
<td>33</td>
<td></td>
<td></td>
<td>13.12.03</td>
<td>65</td>
</tr>
<tr>
<td>24.10.03</td>
<td>22</td>
<td></td>
<td></td>
<td>14.12.03</td>
<td>57</td>
</tr>
<tr>
<td>25.10.03</td>
<td>27</td>
<td></td>
<td></td>
<td>15.12.03</td>
<td>31</td>
</tr>
<tr>
<td>26.10.03</td>
<td>32</td>
<td></td>
<td></td>
<td>16.12.03</td>
<td>25</td>
</tr>
<tr>
<td>27.10.03</td>
<td>38</td>
<td></td>
<td></td>
<td>17.12.03</td>
<td>47</td>
</tr>
<tr>
<td>28.10.03</td>
<td>43</td>
<td></td>
<td></td>
<td>18.12.03</td>
<td>63</td>
</tr>
<tr>
<td>29.10.03</td>
<td>57</td>
<td></td>
<td></td>
<td>19.12.03</td>
<td>65</td>
</tr>
<tr>
<td>30.10.03</td>
<td>20.12.03</td>
<td>55</td>
<td>42</td>
<td>21.12.03</td>
<td>42</td>
</tr>
<tr>
<td>01.11.03</td>
<td>23</td>
<td>17</td>
<td>17</td>
<td>22.12.03</td>
<td>33</td>
</tr>
<tr>
<td>02.11.03</td>
<td>14</td>
<td>9</td>
<td>8</td>
<td>23.12.03</td>
<td>11</td>
</tr>
<tr>
<td>03.11.03</td>
<td>31</td>
<td>24</td>
<td>18</td>
<td>24.12.03</td>
<td>15</td>
</tr>
<tr>
<td>04.11.03</td>
<td>34</td>
<td>20</td>
<td>19</td>
<td>25.12.03</td>
<td>36</td>
</tr>
<tr>
<td>05.11.03</td>
<td>34</td>
<td>20</td>
<td>20</td>
<td>26.12.03</td>
<td>60</td>
</tr>
<tr>
<td>06.11.03</td>
<td>37</td>
<td>30</td>
<td>28</td>
<td>27.12.03</td>
<td>85</td>
</tr>
<tr>
<td>07.11.03</td>
<td>23</td>
<td>17</td>
<td>16</td>
<td>28.12.03</td>
<td>73</td>
</tr>
<tr>
<td>08.11.03</td>
<td>33</td>
<td>24</td>
<td>24</td>
<td>29.12.03</td>
<td>48</td>
</tr>
<tr>
<td>09.11.03</td>
<td>34</td>
<td>27</td>
<td>26</td>
<td>30.12.03</td>
<td>51</td>
</tr>
<tr>
<td>10.11.03</td>
<td>26</td>
<td>19</td>
<td>15</td>
<td>31.12.03</td>
<td>16</td>
</tr>
<tr>
<td>11.11.03</td>
<td>35</td>
<td>30</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.11.03</td>
<td>33</td>
<td>31</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.11.03</td>
<td>46</td>
<td>41</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.11.03</td>
<td>59</td>
<td>57</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.11.03</td>
<td>64</td>
<td>55</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.11.03</td>
<td>51</td>
<td>41</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.11.03</td>
<td>41</td>
<td>35</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.11.03</td>
<td>44</td>
<td>30</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.11.03</td>
<td>56</td>
<td>33</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.11.03</td>
<td>51</td>
<td>26</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.11.03</td>
<td>47</td>
<td>33</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.11.03</td>
<td>42</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.11.03</td>
<td>23</td>
<td>21</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.11.03</td>
<td>42</td>
<td>29</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.11.03</td>
<td>43</td>
<td>36</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.11.03</td>
<td>40</td>
<td>31</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.11.03</td>
<td>29</td>
<td>22</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.11.03</td>
<td>28</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.11.03</td>
<td>17</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.11.03</td>
<td>27</td>
<td>21</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.12.03</td>
<td>33</td>
<td>29</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02.12.03</td>
<td>31</td>
<td>26</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03.12.03</td>
<td>27</td>
<td>21</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.12.03</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05.12.03</td>
<td>30</td>
<td>23</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06.12.03</td>
<td>23</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07.12.03</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08.12.03</td>
<td>30</td>
<td>23</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.12.03</td>
<td>51</td>
<td>37</td>
<td>41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>